林业科学  2015, Vol. 51 Issue (8): 134-142   PDF    
DOI: 10.11707/j.1001-7488.20150818
0

文章信息

李巧, 卢志兴, 张威, 马艳滟, 冯萍
Li Qiao, Lu Zhixing, Zhang Wei, Ma Yanyan, Feng Ping
金沙江干热河谷人工林地表的蚂蚁群落
Communities of Ground-Dwelling Ants in Different Plantation Forests in Arid-Hot Valleys of Jinsha River, Yunnan Province, China
林业科学, 2015, 51(8): 134-142
Scientia Silvae Sinicae, 2015, 51(8): 134-142.
DOI: 10.11707/j.1001-7488.20150818

文章历史

收稿日期:2014-02-25
修回日期:2014-10-22

作者相关文章

李巧
卢志兴
张威
马艳滟
冯萍

金沙江干热河谷人工林地表的蚂蚁群落
李巧, 卢志兴, 张威, 马艳滟, 冯萍    
西南林业大学云南省森林灾害预警与控制重点实验室 昆明 650224
摘要【目的】比较金沙江干热河谷地区7种人工林地表蚂蚁群落的物种组成及多度和多样性,揭示各种人工林生物多样性状况及其对当地生物多样性保护的意义,为云南干热河谷地区的植被恢复和生物多样性保护提供参考。【方法】在云南省元谋县荒漠化生态系统定位观测站的桉树林、膏桐林、膏桐-新银合欢林、印楝林、印楝-大叶相思林、印楝-苏门答腊金合欢林以及印楝-新银合欢林7种人工林中设置调查样地,分别于2011年4月(旱季)和8月(雨季)运用陷阱法对各样地地表蚂蚁群落进行抽样调查。在样地内设置1条200 m长的样带,每隔10 m布设1个口径80 mm、高150 mm的陷阱,共20个;以50 mL 50%的丙三醇作为陷阱溶液,陷阱放置5天后取出其内的蚂蚁,用95%酒精保存。每类型样地设2~3个重复样带。【结果】 1)物种组成:金沙江干热河谷人工林地表蚂蚁群落由5亚科17属36种组成,切叶蚁亚科属种最丰富,有6属18种;蚁亚科次之,有5属10种;臭蚁亚科有4属6种;猛蚁亚科和盲蚁亚科仅1属1种。铺道蚁属种类最丰富,有6种;其次是小家蚁属,有4种。旱季(4月)采集到地表蚂蚁2 127头18种,个体数量最多的分别是黑头酸臭蚁和中华小家蚁;雨季(8月)采集到地表蚂蚁1 874头25种,个体数量最多的分别是扁平虹臭蚁和克氏铺道蚁。金沙江干热河谷人工林旱季地表蚂蚁群落组成和雨季不同,雨季蚂蚁群落表现出其物种组成与植被性质趋于一致的特点。2)多度和多样性: 7种人工林中,印楝林蚂蚁多度最大,无论在旱季还是雨季,都显著大于桉树林和印楝-合欢林;印楝-大叶相思林蚂蚁多样性最高,桉树林蚂蚁多样性最低。在旱季,所有人工林地表蚂蚁多样性之间无显著差异;在雨季,印楝-大叶相思林地表蚂蚁多样性显著高于其他6种人工林。7种人工林之间地表蚂蚁群落相似性较低,β多样性较高。【结论】在金沙江干热河谷元谋段,印楝-大叶相思林具有较高的蚂蚁多样性,对当地生物多样性保护具有积极意义,营造印楝-大叶相思林是很好的植被恢复模式;其余6种人工林具有不太相似的蚂蚁物种组成,对提高区域生物多样性具有积极作用。
关键词蚁科    生物多样性    物种组成    生物指示    人工林    
Communities of Ground-Dwelling Ants in Different Plantation Forests in Arid-Hot Valleys of Jinsha River, Yunnan Province, China
Li Qiao, Lu Zhixing, Zhang Wei, Ma Yanyan, Feng Ping    
Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University Kunming 650224
Abstract: [Objective] Because of the fragile ecological environment in arid-hot valleys of Jinsha River, Yunnan Province, China, the region has been the hot spots of vegetation restoration for which plantation is the main model. To reveal the diversity status of these plantations, and the potential role in biodiversity protection, the ground-dwelling ant community was studied in 7 different plantations in Jinsha River arid-hot valleys, by comparing the difference of ground-dwelling ant community in terms of species composition and diversity. It would be reference for revegetation and biodiversity protection in the arid-hot valleys. [Method] The experimental sites were in the Desert Ecosystem Observation Station of the State Forestry Administration in Yuanmou County. The sampled plots were set in the following tree plantations: Eucalyptus spp.; Jatropha carcas; Jatropha carcas +Leucaena leucocephala; Azadirachta indica; Azadirachta indica+Acacia auriculiformis; Azadirachta indica+Acacia glauca and Azadirachta indica+Leucaena leucocephala. Investigation of ground-dwelling ant community was carried out by pitfall trappings in all 7 plantations in April (dry season) and August (wet season), 2011,respectively. At each plot, two-three 200 m transects were established for ant collection. The 20 pitfall traps with 50ml 50% glycerol were set along each transect at 10 m intervals at ground level. Pitfall traps were made from plastic containers, 8 cm diameter and 15 cm deep, covered by a stone plate to protect the trap from rain. Traps were set for 5 days. The contents of each transect were placed separately in plastic bottles and deposited in 95% alcohol. [Results] The resultswere as follows: 1) Ant community composition: 4001 ant individuals were collected, representing 36 species in 17 genera and 5 subfamilies. The collected Myrmicinae subfamily had the most abundant genus and species, with 18 species in 6 genera, followed by Formicinae with 10 species in 5 genera, then Dolichoderinae with 6 species in 4 genera, and the last groups were Ponerinae and Aenictinae, each only with 1 sepcies and 1 genus. The genus of Tetramorium had the most abundant species with 6 species, followed by genus Monomorium with 4 species. There were 2 127 ant individuals representing 18 species captured in dry season (i.e. in April), among which, Tapinoma melanocephalum and Monomorium chinensis were the most abundant. In wet season (i.e. in August), there were 1 874 ant individuals were captured, among which, Iridmyrmex anceps and Tetramorium cuneinode were the most abundant. There was significant difference of ground-dwelling ant community species composition between dry season and wet season. The ant community in wet season could indicate that the species composition accorded to the features of the vegetations. 2) Ant abundance and diversity: among 7 plantations, the ant abundance in Azadirachta indica plantation was highest regardless the season, and was significantly higher than that in Eucalyptus spp. plantation and Azadirachta indica + Leucaena leucocephala or Acacia glauca plantation. The ant species richness in Azadirachta indica + Acacia auriculiformis plantation was the highest among all plantations, and ant species richness was lowest in Eucalyptus spp. plantation. There was no significant difference in species richness among the plantations in dry season. However, in wet season, the ant species richness in Azadirachta indica + Acacia auriculiformis plantation was significantly higher than that of other 6 plantations. There was low similarity of ant community composition among all selected plantations, which suggested higher β diversity. [Conclusion] The results indicated that Azadirachta indica + Acacia auriculiformis plantation has positive role in local biodiversity protection, and should be selected as a good model in restoration. The other 6 plantations also have certain role in increasing the biodiversity in regional level, owing to their different ant species composition.
Key words: Formicidae    biodiversity    species composition    bio-indication    plantations    

干热河谷位于云南省境内横断山区干旱及半干旱河谷地带,主要分布在金沙江、怒江、澜沧江及元江的中游等河谷区(张荣祖,1992;金振洲等,2000)。金沙江干热河谷生态环境极其脆弱(赵跃龙,1999),一直是植被恢复实践的热点地区(纪中华等,2009)。营造人工林是干热河谷地区植被恢复的主要模式,桉树(Eucalyptus spp.)、印楝(Azadirachta indica)、膏桐(Jatropha carcas)等是造林的主要树种(高洁等,1997;李昆等,2004;李国瑾,2008)。金沙江干热河谷生物多样性研究屡见报道,主要围绕植物(方海东等,2005李昆等,2007)或昆虫(李昆等,2006;李巧等, 20062008),然而缺乏对不同类型人工林的生物多样性比较以及人工林对当地生物多样性保护价值探讨的研究。金沙江干热河谷地区人工林生物多样性水平如何,对于地区生物多样性保护具有什么意义,是影响该地区社会经济发展的重要问题。

蚂蚁是地球上分布最广泛、种类和数量最多的社会性昆虫,其物种组成常被用来评价干扰对蚂蚁群落的影响;在世界范围内,蚂蚁已经成为指示生物多样性和环境变化的重要物种,是使用最广泛的指示生物(Hoffmann,2010;李巧等,2011a;Ribas et al., 2011)。地表蚂蚁容易进行规范化抽样,尤其受到研究者的青睐(Vasconcelos,2006;Chen et al., 2011;李巧等,2011b);然而国内的研究相对薄弱,规范化抽样及分析有待加强(李巧等,2009)。

本文以金沙江干热河谷地区7种人工林地表蚂蚁群落为研究对象,通过比较人工林地表蚂蚁群落物种组成及多度和多样性,揭示各人工林生物多样性状况及其对当地生物多样性保护的意义,为云南干热河谷地区的植被恢复和生物多样性保护提供参考。

1 研究区概况

研究区位于金沙江一级支流龙川江河谷中下游地区的元谋县境内,地理位置101°35′—102°06′E,25°23′—26°06′N,全县南北长77.3 km,东西宽42 km,面积2 021.47 km2。境内最高海拔2 835.9 m、最低海拔898 m;年平均气温21.5 ℃,最热月平均气温27.1 ℃,最冷月平均气温14.9 ℃;≥10 ℃积温7 996 ℃;无霜期350~365天;年日照时数2 550~2 744 h;年降水量623.1 mm,主要集中在6—10月;年蒸发量3 569.2 mm,为降水量的5.8倍。海拔1 300 m以下为燥红土,1 300~2 200 m之间为红壤。干热河谷地区海拔1 600 m以下以稀树灌木草丛为主;1 600 m以上主要为灌丛草地,也有片状森林分布,植被概况见文献(李巧等,2014a2014b)。

在云南省元谋县荒漠化生态系统定位观测站的7种人工林内设置调查样地,样地基本概况见表 1,以撂荒多年的草坡作为对照。

表 1 金沙江干热河谷人工林调查样地基本概况 Tab.1 Basic conditions of the sample plots in plantation forests in arid-hot valleys of Jinsha River
2 研究方法 2.1 调查方法

调查方法见文献(李巧等,2014a;2014b)。分别于2011年4月(旱季)和8月(雨季)运用陷阱法(Longino,2000)对各样地地表蚂蚁群落进行抽样调查。每类型样地设2~3个重复样带。

2.2 数据分析

1)抽样充分性对调查样地的抽样充分性进行判断,利用EstimateS软件计算物种累积曲线,并通过Excel软件绘制曲线(李巧,2011);应用ACE方法对各样地地表蚂蚁群落物种丰富度进行估计,比较物种丰富度S值(物种实际值)与ACE值(物种估计值)的相对大小(Colwell,2009;洪伟,2009)。

2)物种组成按照文献(李巧等,2014b)方法,根据不同物种在各样地的个体数量分布,比较旱季和雨季各样地地表蚂蚁群落的物种组成相似性。

3)多度和多样性按照文献(李巧等,2014b)方法,采用地表蚂蚁个体数来度量各调查样地地表蚂蚁多度,采用物种丰富度S值、ACE值、α指数和Shannon指数度量各调查样地地表蚂蚁多样性,利用SPSS中的One-way ANOVA程序对不同地表蚂蚁群落组成进行方差分析及多重比较。

3 结果与分析 3.1 抽样充分性

金沙江干热河谷人工林旱季及雨季地表蚂蚁群落物种累积曲线见图 1,各调查样带地表蚂蚁群落的S/ACE见表 2

图 1 金沙江干热河谷人工林地表蚂蚁群落物种累积曲线 Fig. 1 Species accumulation curves of ground-dwelling ant community arid-hot valleys of Jinsha River
表 2 云南干热河谷人工林调查样带地表蚂蚁群落的S/ACE Tab.2 S/ACE of ground-dwelling ant communities in sampling transects in arid-hot valleys of Jinsha River

图 1显示,无论是旱季还是雨季,金沙江干热河谷人工林地表蚂蚁群落物种累积曲线均呈渐进性,急剧上升后趋于平缓;除旱季T11、雨季T12的S/ACE较低外,其余均接近或超过0.80(表 2)。显然,此次研究抽样量充分。

3.2 物种组成

金沙江干热河谷人工林地表蚂蚁群落由5亚科17属36种组成(附录),其中猛蚁亚科(Ponerinae)和盲蚁亚科(Aenictinae)均为1属1种;切叶蚁亚科(Myrmicinae)有6属18种,是最丰富的亚科;臭蚁亚科(Dolichoderinae)有4属6种,蚁亚科(Formicinae)有5属10种。在属级分类单元中,铺道蚁属(Tetramorium)种类最丰富,有6种;其次是小家蚁属(Monomorium),有4种。旱季地表蚂蚁有2 127头18种,个体数量最多的分别是黑头酸臭蚁(Tapinoma melanocephalum)和中华小家蚁(Monomorium chinensis);雨季有1 874头25种,个体数量最多的分别是扁平虹臭蚁(Iridmyrmex anceps)和克氏铺道蚁(Tetramorium cuneinode)。旱季地表蚂蚁群落个体数较多,而雨季地表蚂蚁群落种类更丰富。

金沙江干热河谷不同季节人工林地表蚂蚁群落相似性分析见图 2图 3。旱季地表蚂蚁群落基本分为4类:样带8,9,10和12聚为一类,样带13,14聚为一类,样带7,15和16聚为一类,样带3,4,5和6聚为一类,其余3条样带相距甚远(图 2)。雨季地表蚂蚁群落也聚为4类:样带6,7,15和16聚为一类,样带8,13聚为一类,样带3,4和5聚为一类,样带1和11聚为一类,其余5条样带相距甚远而未出现在图中(图 3)。

图 2 金沙江干热河谷人工林旱季地表蚂蚁群落非度量多维尺度分析 Fig. 2 Nonmetric multidimensional scaling for grounddwelling ant communities in dry season in arid-hot valleys of Jinsha River T1,T2 未出现在图中。T1 and T2 could not be seen in the figure.
图 3 金沙江干热河谷人工林雨季地表蚂蚁群落非度量多维尺度分析 Fig. 3 Nonmetric multidimensional scaling for ground- dwelling ant communities in wet season in arid-hot valleys of Jinsha River

上述结果表明,金沙江干热河谷人工林旱季地表蚂蚁群落组成和雨季不同,一些植物组成相同的样带彼此接近,如样带3,4和样带5接近,样带8,9和样带10接近;而一些则距离较远,如旱季时样带6和7。

3.3 多度和多样性

各调查样带不同季节地表蚂蚁群落多度和多样性见表 3。旱季地表蚂蚁群落中,样带5,7和14的物种数最少,其次是样带1,2和15,样带3,6和11蚂蚁物种数丰富,其余6条样带物种数居中。从抽样效果来看,样带11可能是地表蚂蚁最丰富的。雨季地表蚂蚁群落中,样带8,11和12的地表蚂蚁物种数丰富,样带2和5地表蚂蚁物种很少,其余11条样带物种数在5~8之间。从抽样效果来看,大多数样带抽样充分。α指数反映出样带12和11具有较高的地表蚂蚁多样性,样带8和13次之,其余样带地表蚂蚁多样性水平较低。

表 3 金沙江干热河谷人工林地表蚂蚁群落多度及多样性 Tab.3 Abundances and diversities of ground-dwelling ant communities in different plantation forests in arid-hot valleys of Jinsha River

不同林分人工林旱季地表蚂蚁群落多样性比较见表 4。旱季印楝林具有最高的地表蚂蚁多度,膏桐林和印楝-大叶相思林次之,桉树林、膏桐-新银合欢林和印楝-合欢林多度最低,显著低于印楝林,但与对照相比,所有林分在地表蚂蚁多度上均无显著差异。各多样性指数在不同林分中的排序不尽相同,但多重比较的结果显示,无论哪种人工林,其地表蚂蚁多样性水平与对照相比均无显著差异,各人工林彼此间亦无显著差异。

表 4 金沙江干热河谷人工林旱季地表蚂蚁群落多样性比较 Tab.4 Comparison of abundances and diversities of ground-dwelling ant communities in dry season in arid-hot valleys of Jinsha River(mean±SE)

表 5显示,在雨季,对照和印楝林具有最高的蚂蚁多度,桉树林蚂蚁多度较低,印楝-合欢林最低,多重比较结果显示桉树林和印楝-合欢林蚂蚁多度显著低于对照。各多样性指数反映了基本一致的结果:印楝-大叶相思林具有最高的蚂蚁多样性,显著高于对照及其他人工林,而这些人工林多样性水平之间无显著差异。

表 5 金沙江干热河谷人工林雨季地表蚂蚁群落多样性比较 Tab.5 Comparison of abundances and diversities of ground-dwelling ant communities in wet season in arid-hot valleys of Jinsha River(mean±SE)
4 结论与讨论

本研究发现,金沙江干热河谷元谋段人工林地表蚂蚁有36种,其中旱季有18种,雨季有25种。与前期调查(李巧等,2007)相比,此次调查发现的物种数略少,究其原因可能与2次研究的抽样次数及陷阱溶液不同有关。陷阱法是进行地表昆虫群落调查的常用抽样方法,在使用陷阱法时,陷阱溶液不同会导致抽样结果的不同,国内常用糖醋液作为陷阱溶液,而国外则采用乙二醇或丙三醇作为陷阱溶液以保证抽样结果的无偏性(陈又清等,2010)。Chen等(2010)比较了糖醋液和乙二醇作为陷阱溶液进行地表蚂蚁抽样调查的效果,结果发现,相对于乙二醇,使用糖醋液作为陷阱溶液时,采集到的蚂蚁种类和个体数量更多。从干热河谷蚂蚁群落物种组成来看(李巧等,2007),尽管本研究的抽样量充分,但仍然漏掉了一些物种。用乙二醇或丙三醇而不用糖醋液作为陷阱溶液,是与国际通用的地表蚂蚁规范抽样保持一致,为保证调查数据更充分详实,建议在以后的调查中增加抽样次数。

本研究首次比较了旱季和雨季干热河谷地表蚂蚁群落的异同,研究结果与整个地表昆虫群落的调查结果(李巧等,2014b)有所不同:旱季与雨季相比,各调查样带地表蚂蚁群落多度和多样性的变化并不一致,有的样带在旱季发现更多的蚂蚁个体及种类,有的样带则相反;而对地表昆虫群落的调查(李巧等,2014b)显示,雨季时大多数调查样带地表昆虫个体及种类增加,其原因是雨季的降水改变了干热河谷的干旱状况,为动植物提供了优越的生存环境,因而极大提高了地表昆虫的多度和多样性。本研究提示,蚂蚁相对其他地表昆虫如甲虫(李巧等,2014a)而言,更适应干热河谷地区的气候。

金沙江干热河谷7种人工林中,印楝-大叶相思林具有最高的蚂蚁多样性,桉树林蚂蚁多样性最低,该结果与以往的研究(温远光等,2005;李巧等,20072008)一致。然而在旱季,所有人工林地表蚂蚁多样性之间无显著差异;在雨季,印楝-大叶相思林地表蚂蚁多样性显著高于其他6种人工林,这6种人工林之间无显著差异。不同人工林的蚂蚁多样性格局形成受到季节的影响,尽管地表蚂蚁更能适应干热气候,但干旱使得不同人工林的旱季地表蚂蚁多样性无显著差异,而雨季的到来则改变了这种多样性格局。雨水在改变干热河谷干旱状况的同时,促进了植物的生长,而不同的植物多度及多样性又进一步影响了不同人工林的地表蚂蚁多度和多样性。金沙江干热河谷大多数人工林地表蚂蚁多样性无显著差异,这种多样性的格局应该与这些人工林具有共同的优势草本植物——扭黄茅(Heteropogonetea contortus)有关。

从群落间相似性即β多样性来看,群落相似性较高,则其异质性较低,亦即β多样性较低(Solow et al., 1994;Crist et al., 2003)。本研究7种人工林地表蚂蚁群落物种组成的相似性较低,说明它们之间具有较高的β多样性。有研究表明,在有自然植被分布的样地营造人工林,对自然植被的保护和恢复具有积极意义;随着时间的推移,人工林的栖境将更加复杂,其作为动植物栖境的价值将更加重要(Brockerhoff et al., 2008);而栖境异质性有助于提高动物的生物多样性(Tews et al., 2004)。因此,在金沙江干热河谷元谋段,印楝-大叶相思林具有较高的蚂蚁多样性,对当地生物多样性保护具有积极意义,营造印楝-大叶相思林是很好的植被恢复模式;其余6种人工林地表蚂蚁群落具有不太相似的物种组成,即它们具有较高的β多样性,对提高区域生物多样性具有积极作用。

高成杰等(2013)研究表明,印楝和大叶相思林混交后根系的生物量下降,认为该混交方式可能不适当;而本研究认为,营造印楝-大叶相思林对金沙江干热河谷地区生物多样性保护具有积极意义。这种恢复模式的实际价值和意义何在,还值得进一步探究。

此外,人工林的后续管理值得重视。随着人口的快速增长,干热河谷景观已经发生了转变(钟祥浩,2000),导致环境退化、生产力降低、承载力下降以及物种消失(Solbrig et al., 1996),而农业上的精细化管理也会造成蚂蚁多样性的下降(Rizali et al., 2013)。如何对现有人工林进行科学管理,以提高其生物多样性水平,在当地生物多样性保护中充分发挥作用,是研究人员及管理工作者需要共同应对的问题。

附录 金沙江干热河谷人工林地表蚂蚁名录 Appendix List of ground-dwelling ant in different plantations in arid-hot valleys of Jinsha River
参考文献(References)
[1] 陈又清, 李 巧, 陈彦林, 等. 2010. 糖醋液和乙二醇对地表甲虫的诱集效率比较. 昆虫知识, 47(1): 129-133.
(Chen Y Q, Li Q, Chen Y L, et al. 2010. Comparison of trapping efficiency for ground-dwelling beetles by sugar-vinegar mixture and ethylene glycol. Chinese Bulletin of Entomology, 47(1): 129-133[in Chinese]).(1)
[2] 方海东, 纪中华, 杨艳鲜, 等. 2005. 金沙江干热河谷新银合欢人工林物种多样性研究. 水土保持学报, 12(1): 135-137.
(Fang H D, Ji Z H, Yang Y X, et al. 2005. The study on species diversity of Leucaena leucocephala plantation in Jinsha River hot and dry valley. Research of Soil and Water Conservation, 12(1): 135-137[in Chinese]).(1)
[3] 高成杰, 唐国勇, 李 昆, 等. 2013. 干热河谷印楝和大叶相思人工林根系生物量及其分布特征. 生态学报, 33(6): 1964-1972.
(Gao C J, Tang G Y, Li K, et al. 2013. Root biomass and its distribution of Azadirachta indica and Acacia auriculiformis plantations in the dry-hot valley. Acta Ecologica Sinica, 33(6): 1964-1972[in Chinese]).(1)
[4] 高 洁, 刘成康, 张尚云. 1997. 元谋干热河谷主要造林植物的耐旱性评估. 西南林学院学报, 17(2): 19-24.
(Gao J, Liu C K, Zhang S Y. 1997.The estimation on drought tolerance of main silvicultural species in the dry -hot river valley of Yuanmou. Journal of Southwest Forestry College, 17(2): 19-24[in Chinese]).(1)
[5] 洪 伟. 2009. 试验设计与统计分析. 北京: 中国农业出版社, 1-356.
(Hong W. 2009. Experiment Design and Statistical Analysis. Beijing: China Agriculture Press, 1-356.[in Chinese])(1)
[6] 纪中华,方海东,杨艳鲜,等. 2009. 金沙江干热河谷退化生态系统植被恢复生态功能评价——以元谋小流域典型模式为例. 生态环境学报, 18(4): 1383-1389.
(Ji Z H, Fang H D, Yang Y X, et al. 2009. Assessment of system functions after vegetation restoration of the degraded ecosystem in arid-hot valleys of Jinsha River: a case study on small watershed of Yuanmou. Ecology and Environmental Sciences, 18(4): 1383-1389[in Chinese]).(1)
[7] 金振洲, 欧晓昆. 2000.干热河谷植被. 昆明: 云南大学出版社,云南科技出版社, 1-302.
(Jin Z Z, Ou X K. 2000. Vegetation in Dry-hot Valley. Kunming: Yunnan University Press & Yunnan Science and Technology Press, 1-302.[in Chinese])(1)
[8] 李国瑾. 2008. 云南: 小小膏桐要做大文章. 中国林业, 5(10): 16-17.
(Li G J. 2008.Yunnan: small Jatropha carcas will do a great article. Forestry of China, 5(10): 16-17[in Chinese]).(1)
[9] 李 昆, 李 巧, 陈又清, 等. 2007. 放牧对明油子-扭黄茅灌草丛生物多样性的影响. 浙江林学院学报, 24(6): 769-774.
(Li K, Li Q, Chen Y Q,et al. 2007. Influence of grazing on diversity of Dodonaea angustifolia-Heteropogonetea contortus scrub and grass clump. Journal of Zhejiang Forestry College, 24 (6): 769-774[in Chinese]).(1)
[10] 李 昆, 罗长维, 陈 友, 等. 2006. 元谋干热河谷生态恢复区昆虫多样性研究.生态学杂志, 25(4): 417-422.
(Li K, Luo C W, Chen Y, et al. 2006. Insect species diversity in ecologically restored area of Yuanmou dry and hot valley. Chinese Journal of Ecology, 25(4): 417-422[in Chinese]).(1)
[11] 李 昆, 张春华, 崔永忠, 等. 2004. 金沙江干热河谷区退耕还林适宜造林树种筛选研究. 林业科学研究, 17(5): 555-563.
(Li K, Zhang C H, Cui Y Z, et al. 2004. A Study on the fitting afforestation tree species during coverting the land for forestry in hot and arid valley of Jinsha-river. Forest Research, 17(5): 555-563[in Chinese]).(1)
[12] 李 巧. 2011. 物种累积曲线及其应用. 应用昆虫学报, 48(6): 1882-1888.
(Li Q. 2011. Species accumulation curves and its application. Chinese Journal of Applied Entomology, 48(6): 1882-1888[in Chinese]).(1)
[13] 李 巧,陈又清,郭 萧,等. 2007. 云南元谋干热河谷不同生境地表蚂蚁多样性.福建林学院学报,27(3): 272-277.
(Li Q, Chen Y Q, Guo X, et al. 2007. Diversity of ants on the ground in different habitats in Yuanmou arid-hot valley, Yunnan. Journal of Fujian College of Forestry, 27(3): 272-277[in Chinese]).(3)
[14] 李 巧,陈又清,施永泽,等. 2006. 金沙江干热河谷生态恢复区昆虫群落多样性.福建林学院学报,26(1): 58-62.
(Li Q, Chen Y Q, Shi Y Z, et al. 2006. Diversity of insect communities in the ecological restoration areas in Arid-hot Valleys of the Jinshajiang River. Journal of Fujian College of Forestry, 26(1): 58-62[in Chinese]).(1)
[15] 李 巧, 陈又清, 徐正会. 2009. 蚂蚁群落研究方法. 生态学杂志, 28(9): 1862-1870.
(Li Q, Chen Y Q, Xu Z H. 2009. Methods of study on ant communities. Chinese Journal of Ecology, 28(9): 1862-1870[in Chinese]).(1)
[16] 李 巧, 陈又清, 周兴银, 等. 2008. 元谋干热河谷桉树林昆虫群落初步研究. 浙江林学院学报, 25(4): 502-506.
(Li Q, Chen Y Q, Zhou X Y, et al. 2008. Initial studies on the insect community in Eucalyptus plantation. Journal of Zhejiang Forestry College, 25(4): 502-506[in Chinese]).(2)
[17] 李 巧, 涂 璟, 熊忠平, 等. 2011a. 节肢动物生物指示研究综述. 西北林学院学报, 26(4): 155-161.
(Li Q, Tu J, Xiong Z P, et al. 2011a. A review on bioindication based on arthropods. Journal of Northwest Forestry University, 26(4): 155-161[in Chinese]).(1)
[18] 李 巧, 涂 璟, 张学仕, 等. 2011b. 昆明松花坝水源保护区云南松林地表蚂蚁多样性.云南大学学报, 33(2): 210-217.
(Li Q, Tu J, Zhang X S, et al. 2011b. Diversity of ground-dwelling ants in Pinus yunnanensis forest in Songhuaba water protection area, Kunming. Journal of Yunnan University, 33(2): 210-217[in Chinese]).(1)
[19] 李 巧, 卢志兴, 张 威,等. 2014a. 云南干热河谷人工林地表甲虫群落. 云南农业大学学报:自然科学版, 29(6):785-791.
(Li Q, Lu Z X, Zhang W, et al. 2014a. Communities of ground-dwelling beetles in plantation forests in arid-hot valleys of Yunnan. Journal of Yunnan Argricultural University: Natural Science Edition, 29(6):785-791[in Chinese]).(3)
[20] 李 巧, 张 威, 卢志兴, 等. 2014b. 金沙江干热河谷人工林地表昆虫群落. 云南大学学报:自然科学版, 36(4): 614-622.
(Li Q, Zhang W, Lu Z X, et al. 2014b. Communities of above-ground insects in plantation forests in arid-hot valleys of Jinsha River,Yunnan. Journal of Yunnan University: Natural Science Edition, 36(4): 614-622[in Chinese]).(6)
[21] 温远光, 刘世荣, 陈 放, 等. 2005. 桉树工业人工林植物物种多样性及动态研究. 北京林业大学学报, 27(4):17 -22.
(Wen G Y, Liu S R, Chen F, et al. 2005. Plant diversity and dynamics in industrial plantations of eucalyptus. Journal of Beijing Forestry University, 27 (4):17 -22[in Chinese]).(1)
[22] 张荣祖. 1996. 横断山区干旱河谷. 北京: 科学出版社, 1-211.
(Zhang R Z. 1996. Dry river valley in Hengduan Mountains Southwest China. Beijing: Science Press, 1-211.[in Chinese])
[23] 赵跃龙. 1999. 中国脆弱生态环境类型分布及其综合整治. 北京: 中国环境出版社, 1-161.
(Zhao Y L. 1999. Distribution of the category of vulnerable eco-environment and the comprehensive improvement in China. Beijing: Chinese Environmental Science Press, 1-161.[in Chinese])(1)
[24] 钟祥浩. 2000. 干热河谷区生态系统退化及恢复与重建途径. 长江流域资源与环境, 9(3): 376-383.
(Zhong X H. 2000.Degradation of ecosystem and ways of its rehabilitation and reconstruction in dry and hot valley: Take representative area of Jinsha River, Yunnan Province as an example. Resources and Environment in the Yangtze Basin, 9(3): 376-383[in Chinese]).(1)
[25] Brockerhoff E G, Jactel H, Parrotta J A, et al. 2008. Plantation forests and biodiversity: oxymoron or opportunity?. Biodiversity and Conservation, 17(5): 925-951.(1)
[26] Chen Y, Li Q, Chen Y,et al. 2011. Ant diversity and bio-indicators in land management of lac insect agroecosystem in Southwestern China. Biodiversity and Conservation, 20(13): 3017-3038.(1)
[27] Chen Y, Li Q, Wang S, et al. 2010. A comparison of pitfall traps with different liquids for studying ground-dwelling ants (Hymenoptera: Formicidae). Myrmecological News, 14: 13-19.(1)
[28] Colwell R K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. http://purl.oclc.org/estimates.(1)
[29] Crist T O, Veech J A, Gering J C,et al. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162(6): 734-743.(1)
[30] Hoffmann B D. 2010. Using ants for rangeland monitoring: global patterns in the responses of ant communities to grazing. Ecological Indicators, 10(2): 105-111.(1)
[31] Longino J T. 2000.What to do with the data//Agosti D,Majer J D, Alonso L E, et al. Ants:Standard Methods for Measuring and Monitoring Biodiversity. Washington and London: Smithsonian Institution Press, 186-203.(1)
[32] Ribas C R, Campos R B, Schmidt F A, et al. 2011. Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology, 2012:1-23.http://dx.doi.org/10.1155/2012/636749.(1)
[33] Rizali A,Clough Y, Buchori D, et al. 2013. Long-term change of ant community structure in cacao agroforestry landscapes in Indonesia. Insect Conservation and Diversity, 6(3): 328-338.(1)
[34] Solbrig O T, Medina E, Silva J F. 1996. Biodiversity and tropical savanna properties: a global view. Scope-Scientific Committee on Problems of the Environment International Council of Scientific Unions, 55: 185-211.(1)
[35] Solow A R, Polasky S. 1994. Measuring biological diversity. Environmental and Ecological Statistics, 1(2): 95-103.(1)
[36] Tews J, Brose U, Grimm V,et al. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31(1): 79-92.(1)
[37] Vasconcelos H L. 2006. Patterns of diversity and responses to rorest disturbance by ground-dwelling ants in Amazonia//Moreira F M, Siqueira J O, Brussaard L. Soil Biodiversity in Amazonian and Other Brazilian Ecosystems. CABI Publishing, 1-304.(1)