林业科学  2015, Vol. 51 Issue (4): 36-43   PDF    
DOI: 10.11707/j.1001-7488.20150405
0

文章信息

张蕊, 王艺, 金国庆, 周志春
Zhang Rui, Wang Yi, Jin Guoqing, Zhou Zhichun
模拟氮沉降对低磷胁迫下3个种源木荷幼苗生长及叶片氮磷含量的影响
Effects of simulated N deposition on growth and Leaf N and P Content in Seedlings of Three Provenances of Schima superba under Phosphorous Deficit Stress
林业科学, 2015, 51(4): 36-43
Scientia Silvae Sinicae, 2015, 51(4): 36-43.
DOI: 10.11707/j.1001-7488.20150405

文章历史

收稿日期:2014-08-06
修回日期:2014-11-18

作者相关文章

张蕊
王艺
金国庆
周志春

模拟氮沉降对低磷胁迫下3个种源木荷幼苗生长及叶片氮磷含量的影响
张蕊, 王艺, 金国庆, 周志春     
中国林业科学研究院亚热带林业研究所 富阳 311400
摘要:【目的】讨论不同产区木荷种源在NH4+-N或NO3--N沉降下的生长表现和响应差异,揭示不同形态氮素对木荷生长发育的影响,为在大气氮沉降环境背景下,选育营养高效利用的木荷速生优质新品种提供理论依据。【方法】以木荷北缘种源区-浙江杭州种源、中部种源区-福建建瓯种源和中部靠南边缘种源区-江西信丰种源3个有代表性的木荷种源作为试验材料,模拟不同形态氮沉降(NH4+和NO3-)增加对不同土壤磷素处理下木荷幼苗生长和叶片氮、磷元素含量的影响。盆栽试验设置土壤低磷(1.1 mg ·kg-1)处理和高磷(25 mg ·kg-1)对照,以人为喷施NH4Cl和NaNO3溶液进行氮沉降模拟,分别设置3个氮沉降量水平:0,80和200 kg ·N ·hm-2 ·a-1,试验按完全随机区组设计,每种源每处理重复12株苗。2013年11月收获,测定苗高、地径等生长指标,并分别测定根、茎、叶各部分干物质量和磷、氮含量。【结果】不同形态氮沉降对木荷苗木生长影响差异显著,磷素可提高种源间对氮素的响应差异。在低磷环境下,不同氮处理下木荷植株生物量和根冠比变异系数较大,这为氮沉降下木荷耐受型植株的选择提供了可能。低磷环境下,NO3--N对木荷苗木生长促进作用显著,苗高、地径和生物量分别较NH4+-N处理高4.5%,17.8%和75.2%,叶片氮、磷含量提高,叶片N:P比下降。NH4+-N对木荷植株的生长抑制作用较强,导致叶片磷含量下降,N:P升高,植株受到磷胁迫增强。而在高磷环境下,NH4+-N的促进作用增强,苗高、地径和生物量分别较NO3--N处理高13.5%,10.4%和25.4%。无论土壤在高磷还是低磷环境下,NO3--N降低叶片N/P比,而NH4+-N增加叶片N/P比。木荷种源间对不同形态氮沉降响应差异显著,在土壤低磷环境下,NH4+-N处理抑制了福建建瓯种源和江西信丰种源生长,生物量下降,而杭州种源却在NH4+-N80处理下,苗高和地径生长较对照分别增加19%和20%。【结论】在低磷环境下,NO3--N对木荷不同种源幼苗生长促进作用更强,而当土壤磷含量提高时,NH4+-N的促进作用增强,同时苗木生长差异增大。浙江杭州种源对NH4+-N的适应性更强,而福建建瓯和江西信丰种源则对NO3--N适应性更强。
关键词硝态氮    铵态氮    木荷    种源    氮沉降    低磷    叶片N:P    
Effects of simulated N deposition on growth and Leaf N and P Content in Seedlings of Three Provenances of Schima superba under Phosphorous Deficit Stress
Zhang Rui, Wang Yi, Jin Guoqing, Zhou Zhichun     
Research Institute of Subtropical Forestry CAF Fuyang 311400
Abstract: 【Objective】 This paper focuses on how NH4+-N and NO3--N deposition impacts the growth of different provenances of Schima superba, especially in phosphorous (P) deficit soils. The results could formulate the breeding strategy of S. superba under N deposition. 【Methods】 Three representative provenances were chosen for study. These were Zhejiang Hangzhou provenance which was stand for north edge area, Fujian Jian'ou provenance which was stand for central area, and Jiangxi Xinfeng provenance which was stand for south-central edge area. One-year-old of three provenances of S. superba seedlings grown on P-limited (1.1 mg kg-1) and P-Normal soil (25 mg ·kg-1) were treated with NaNO3 and NH4Cl solutions at the following levels: 0, 80, and 200 kg N ha-1 year-1, respectively. Completely randomized experimental design was conducted and twelve seedlings were contained in each provenance and treatment. The seedlings were harvest on November 2013, and the seedling characteristics and the root, steam, the leaf N and P content were measured. 【Results】 The results showed that the growth of S.superba was significant different with different forms of nitrogen deposition and it was enlarged by P addition. The coefficient of variation of biomass and root:aboveground mass ratio (RAR) were greater under lower-P supply. S. superba responded positively to NO3--N under lower-P soil and the seedling height, SBD and biomass were 4.5 %, 17.8 % and 75.2 % higher than that with NH4+-N. S. superba's leaf N and P concentrations increased with NO3--N treatments, and the leaf N:P ratios was decreased. The NH4+-N addition had more inhibitory impact, by decreasing leaf P content and increased the leaf N:P ratios, and made plants prone to P limitation. While in high-P soil, NH4+-N had promotion affection. The seedling height, SBD and biomass were 13.5 %, 10.4 % and 25.4 % higher than with NO3--N. Whether in low-P or in high-P treatment, NO3--N decreased the leaf N:P ratios and NH4+-N increased the leaf N:P ratios. There were significant differences among provenances with different forms of nitrogen deposition. Under low-P treatment, the seedling growth of Fujian Jian'ou provenance and Jiangxi Xinfeng provenance were inhibited by NH4+-N, however, the seedling height and SBD were increased 19% and 20% respectively by NH4+-N80. 【Conclusions】 NO3--N increased the seedling of S. superba growth when soil P was lower. When soil P increased, NH4+-N instead of the increased effect and the difference between seedlings was larger. Zhejiang Hangzhou provenance was more adaptive to NH4+-N addition while Fujian Jianou and Jiangxi Xinfeng provenances were more adaptive to NO3--N.
Key words: nitrate nitrogen    ammonium nitrogen    Schima superba    provenance    nitrogen deposition    phosphorus limitation    leaf N:P ratios    

近年来,随着人类活动及工业污染的加剧,我国无机氮的排放量已逐渐达到一个较高水平。遆超普等(2010)指出,我国南方N沉降量在2007年就已达到45 kg N·hm-2·a-1以上,比1980年增长了2倍多,其中,NH4+-N沉降量巨大,占沉降总量的2/3,是美国和日本的4倍和3.7倍(何园球,1993),而NO3--N沉降增长率也呈逐年增加趋势(Liu et al.,20112013)。通常认为土壤中适量的NH4+或NO3-的添加会诱导植物根系发育,促进植株生长,而NH4+过量则会对根系产生毒害作用使植物生长受抑(葛体达等,2008Magaña et al.,2009Desnos,2008Johansson et al.,2010)。因此,在氮沉降丰富地区,尤其是在NH4+-N和NO3--N沉降量不平衡地区,开展林木生长发育的研究,具有重要意义。

木荷(Schima superba)是山茶科(Theaceae)木荷属常绿阔叶大乔木,为亚热带地带性常绿阔叶林的主要建群种,也是我国南方主栽的生态防护树种和珍贵用材树种。造林成效好,优质速生,丰产性显著。木荷存在丰富的种源和家系变异,养分斑块觅取能力差异巨大(周志春等,2006林磊等,2009ab)。研究认为,适量的氮素处理会增加木荷幼苗生长量,促进净光合速率和水分利用效率,但却降低了根系生物量等(李德军等,20042005Mo et al.,2008张蕊等,2013ab)。但现有对木荷开展的氮沉降研究主要以NH4NO3为外加氮源,较少讨论NH4+或NO3-对木荷生长的影响。本文选用不同产区木荷种源,讨论在NH4+-N或NO3--N沉降下不同种源的生长表现和响应差异,为在大气N沉降环境背景下,选育营养高效利用的木荷速生优质新品种提供理论依据。

1 材料与方法 1.1 试验材料

以浙江杭州、福建建瓯和江西信丰3个不同产地的木荷代表性种源为试验材料,在低磷土壤上开展不同形态(NH4+-N和NO3--N)氮沉降盆栽模拟试验。其中,浙江杭州种源来自木荷北缘种源区,该种源产地纬度较高,氮沉降丰富,木荷苗期生物积累量较低; 江西信丰种源来自木荷中部靠南边缘种源区,该种源产地纬度较低,居于内陆,氮沉降水平亦较低,但苗期生物积累量较高; 福建建瓯种源来自木荷中部种源区,该种源产地纬度和氮沉降水平居于前两者之间,苗期生物积累量最高(余琳等,2005张萍等,2006林磊,2009a遆超普等,2010)。

1.2 试验设计

磷素水平按照全国第2次土壤普查养分分级数据为依据,低磷盆栽基质取自浙江省淳安县姥山林场的酸性贫瘠红壤(低磷,low-P),其全氮含量为0.57 g·kg-1,水解氮、速效钾和有效磷含量分别为47.6,144.2,1.1 mg·kg-1,pH 5.3。以每千克贫瘠土壤施用1.5 g过磷酸钙,并按质量比例加入1.5%的矾土(Ai2O3)和8.5%的蛭石,混匀后作为对照(高磷,25 mg·kg-1,high-P)。

试验以全株喷施NH4Cl和NaNO3溶液来模拟NH4+-N和NO3--N沉降处理。根据文献中(郑利霞等,2007胡正华等,2010遆超普等,2010)我国南方氮沉降数据为依据,设3个处理组,分别为N0(对照 0 kg N ha-2a-1)、N80(低氮,80 kg N·hm-2a-1)和N200(高氮,200 kg N·hm-2a-1),N80和N200对应浓度分别为0.002 5和0.006 2 mol·L-1。试验按完全随机区组设计,处理包括low-P×N0,high-P×N0,low-P×NO3--N80,low-P×NO3--N200,low-P×NH4+-N80,low-P×NH4+-N200,high-P×NO3--N80,high-P×NO3--N200,high-P×NH4+-N80和high-P×NH4+-N200,每种源每处理重复12株苗,总计360株。选用上端内径16 cm,下端内径13.5 cm,高18 cm的营养杯作为盆栽容器。每营养杯装土约3.75 kg。

整个盆栽试验在浙江省淳安县姥山林场国家马尾松良种基地实验大棚内进行,该基地位于杭州千岛湖东南湖区,29°32′34″ N,119°04′04″ E,海拔约200 m。木荷种源试验种子于2013年3月10日播种,5月中旬,将生长整齐一致的芽苗移栽,每盆移栽2株芽苗,成活后保留1株,幼苗正常供水,保证盆土湿润不干燥,自6月起每月月初和月中分2次向幼苗全株喷施NH4Cl或NaNO3溶液直至收获。

1.3 试验采收及指标测定

试验于2013年11月上旬收获。每个处理选取6株生长正常的盆栽苗木,测量其苗高和地径,同时植株分根、茎、叶,经105 ℃杀青1 h后80 ℃烘干至恒量,测定各部分的干物质量。用浓H2SO4-H2O2消煮-钼锑抗比色法和凯氏定氮法分别测定各部分磷、氮含量(Bremner et al.,1982Anderson et al.,1989)。

1.4 数据处理

以单株测定值为单元,利用SAS软件GLM程序进行性状方差分析,并用DUNCAN法进行多重比较,以检验种源、氮素形态、氮素水平及其互作效应的显著性。

2 结果与分析 2.1 NH4+-N和NO3--N沉降下木荷种源苗木生长整体表现

从不同土壤环境的木荷氮沉降模拟试验结果可知,木荷在高磷环境下生长整体表现较低磷环境好,苗高、地径和生物量分别较低磷提高了2.0,1.9和6.9倍,根冠比降低(表 1)。木荷苗高、地径、生物量和根冠比随着土壤磷素的增高,在种源间、氮素类型间和氮素水平间的差异显著提高。在低磷环境下,NH4+-N和NO3--N沉降对地径和生物量影响差别较大,而苗高和地径生长存在种源×N类型的交互效应,木荷的生物量积累存在种源×N水平的交互效应。木荷生物量和根冠比在低磷环境下具有较大的变异系数,说明木荷个体间对氮素的敏感程度差异较大,这对在氮沉降背景下,选育在低磷土壤上生物量大的木荷新品系具有重要的意义。

表 1 不同形态氮(NH4+-N和NO3--N)及用量下3个木荷种源在不同土壤(低磷和高磷)上生长指标方差分析 Tab.1 he ANOVA analysis of seedling growth characters of three provenances of S.superba under N and P treatments
2.2 NH4+-N和NO3--N沉降对木荷种源苗木生长、生物量及根冠比的影响

NH4+-N和NO3--N沉降对木荷生长整体表现为促进作用,但不同磷素处理下,不同形态氮对木荷苗木的影响差异显著。例如,在低磷土壤上,NO3--N的促进作用更强,苗高、地径和生物量分别较NH4+-N处理高4.5%,17.8%和75.2%,而在高磷土壤上,则NH4+-N的促进作用更强,苗高、地径和生物量分别较NO3--N处理高13.5%,10.4%和25.4%(表 2)。在NH4+-N和NO3--N沉降的作用下,不同种源间苗高、地径、生物量和根冠比等生长表现差异较大(图 12)。在低磷环境下,福建建瓯种源在NH4+-N处理下,苗高和地径生长较对照下降,且随着浓度增加,这种降低幅度增大; 江西信丰种源在NH4+-N处理下苗高增加但是地径却显著降低; 而杭州种源却在NH4+-N80处理下,苗高和地径生长较对照分别增加19%和20%(图 1)。对生物量比较发现,NH4+-N处理对福建建瓯和江西信丰种源的抑制作用较强,生物量较对照下降,根冠比在N80处理时显著增加而后下降,而NH4+-N80对浙江杭州种源干物质积累呈显著促进作用(图 2AB); NO3--N80沉降对杭州种源生物量积累促进作用较强,生物量较对照显著增加86%,而NO3--N200对福建建瓯和江西信丰种源促进作用较强,但是根冠比却较对照下降(图 2AC),说明NO3--N200显著促进了这2个种源地上部的生长。

表 2 不同形态氮素对木荷不同种源苗木生长指标的影响 Tab.2 The growth characters of three provenances of S.superba under different N and P treatments
图 1 NH4+-N和NO3--N沉降对3个木荷种源苗高和地径的影响 Fig. 1 Effects of NH4+-N and NO3--N deposition on seedling height and stem base diameter of three provenances of S.superba 不同小写字母表示在0.05水平上差异显著 Bars with the different letters were significantly different at 0.05 level (DUNCAN test, P< 0.05).
图 2 NH4+-N和NO3--N沉降对3个木荷种源生物量和根冠比的影响 Fig. 2 Effects of NH4+-N and NO3--N deposition on seedling biomass and RAR of three provenances of S.superba

相对来讲,氮素对高磷环境下生长的木荷苗木的促进作用更加明显,尤其是NH4+-N200和NO3--N200的促进作用更强(图 1BD图 2B),这说明高磷提高了木荷苗木对N水平的适应能力。但是在高磷环境下,NO3--N对江西信丰种源的生长作用不大。

2.3 NH4+-N和NO3--N沉降对木荷不同种源苗木叶片氮磷含量的影响

不同形态氮沉降不仅改变了木荷幼苗生长,而且影响了叶片中氮磷素含量,且在种源间差异显著(表 3)。低磷环境中,NO3--N提高了叶片中N,P的含量,降低了N/P比,而NH4+-N对叶片P含量的抑制作用更强。浙江杭州种源叶片P含量在NH4+-N的影响下提高和叶片N在NO3--N的影响下降低的趋势与其他2个种源相反,说明该种源对NH4+-N的适应能力更强。在高磷环境中,NO3--N对叶片P的促进作用降低,表现出对叶片P的抑制作用,而浙江杭州种源在NO3--N的作用下,叶片P含量仍然保持较高的含量; 叶片N含量较对照接近或降低。总体来说,无论在高磷还是低磷环境下,NO3--N对叶片N/P比有降低作用而NH4+-N对叶片N/P比有增加作用。

表 3 NH4+-N和NO3--N沉降对木荷叶片氮磷含量的影响 Tab.3 Effects of NH4+-N and NO3--N deposition on leaf N and P contents of S.superba
3 结论与讨论

研究表明,硝态氮和铵态氮是植物能直接吸收的2种主要无机氮源,但不同物种间对两者的吸收同化能力差异较大,这将直接影响到植物的生长发育(师进霖等,2009)。一般来讲,NO3-作为氮源时,不需要根同化就可直接被植物吸收(Marschner et al.,1995; Wang et al.,2009),刺激侧根生长(葛体达等,2008Magaña et al.,2009),植株生长旺盛(Köchy et al.,2001),而NH4+增多会造成土壤酸化,更多的是对植物的毒害作用(Britto et al.,2002)。本文研究结果揭示,不同形态氮沉降对木荷植株生长发育的影响差异较大,在低磷环境下,NO3--N对木荷不同种源幼苗生长促进作用更强,苗高、地径和生物量在其作用下显著增加,而当土壤磷含量提高时,NH4+-N的促进作用增强,同时苗木生长差异增大。前期研究结果认为,在N沉降影响下,栽种木荷的不同含磷量的土壤其pH值差异较大,由于氮沉降和植株的共同影响,低磷土壤酸性更强,pH值更低,而土壤磷素含量提高时,pH值相对较高(张蕊,待发表)。研究表明,植物吸收NH4+,释放H+而易造成培养基质酸化,NO3-则释放OH-使培养基质碱化。因此,土壤pH值的差异会造成植株对硝态氮和铵态氮的吸收比例,在其他条件一致时,pH低有利于硝态氮的吸收,而高pH值则有利于铵态氮的吸收(李宝珍等,2009吴巍等,2010)。另外,木荷为山茶科植物,高磷下NH4+-N对木荷的促进作用增强也有可能和一些山茶科植物一样,由于根部具有强大的谷氨酰胺合酶(glutamine synthetase)活性,能维持对NH4+-N的高水平需求有关(Ishigaki,1974; Walch et al.,2000; Britto et al.,2002; Wang et al.,2006; Ruan et al.,2007)。而在低磷酸性土壤上,额外的NH4+-N的输入,进一步导致土壤变酸,降低了植株的耐受力,造成毒害,不利于生长。

通过木荷体内元素含量的研究发现,无论土壤磷素含量高低,NO3--N的添加增强了木荷对土壤磷素的积累,叶片磷素含量提高,但是叶片氮素含量并未显著增加,叶片N/P下降,而在NH4+-N影响下叶片磷素含量下降,在低磷环境下,叶片氮素增加,致使叶片N/P显著上升,植株处于磷胁迫状态。研究认为,NH4+的同化主要在根部进行,植株叶片中磷素的降低有可能和根部积累较多的ATP、谷氨酰胺合酶等物质用于同化吸收NH4+-N有关(狄廷均等,2007许征宇等,2008陈永亮等,2012刘赣等,2012)。

低磷环境下,木荷苗高和地径间存在极显著的种源×氮素形态间差异,说明种源和氮素形态对植株生长影响较大。参试的3个种源分别来自浙北、闽北和赣南,分属木荷不同产区,具有较大的纬度差异。研究发现,杭州种源整体生长对氮沉降反应敏感,无论硝态氮或铵态氮沉降,在氮沉降初期,该种源均较其他2个种源表现出较强的生长势,该种源尤其对NH4+-N适应性强,在NH4+-N200处理下,仍然生长旺盛。与其他2个种源比较,杭州种源在NH4+-N作用下,叶片P含量提高,可以有效地促进叶片叶绿素合成速率及提高相关酶活性,地径加粗、生物量提高(高守疆等,1989吴楚等,2005沈允钢等,2010)。这说明该种源对NH4+-N沉降具有极强的适应能力。而中心产区建瓯种源和南部信丰种源则在NO3--N沉降下表现出较好的适应能力。研究表明,浙江省大气N沉降在我国大陆地区中居于较高水平,1980—2007年间N沉降量均在全国均值范围以上,杭嘉湖地区N沉降量超过每年30 kg·hm-2,其中NH4+-N含量较高,占总量的2/3(Sickman et al.,2001Keene et al.,2002王小治等,2004郑利霞等,2007陈义等,2009遆超普等,2010胡正华等,2010)。长期适应的结果可能导致杭州种源更偏向于NH4+-N的吸收利用。由于氮沉降是一个长期的过程,需要对该实试结果做进一步的观测,以期更客观的揭示不同形态氮沉降下,氮素和磷素对木荷种源苗木生长发育的机理。

参考文献(References)
[1] 陈 义, 唐 旭, 杨生茂,等. 2009. 杭州稻麦菜轮作地区大气氮湿沉降. 生态学报, 29(11): 6102-6109.
(Chen Y, Tang X, Yang S M,et al. 2009. Atmospheric N wet deposition in Hangzhou region under rice-wheat-vegetable cropping system. Acta Ecologica Sinica, 29(11): 6102-6109[in Chinese]).(1)
[2] 陈永亮. 2012. 不同氮源对黑松幼苗根-土界面无机磷形态转化及有效性的影响.林业科学, 48(3):51-57.
(Chen Y L. 2012. Effects of different nitrogen sources on transformation and availability of inorganic phosphorus in the root-soil interface of Pinus thunbergii seedlings. Scientia Silvae Sinicae, 48(3): 51-57[in Chinese]).(1)
[3] 狄廷均, 朱毅勇, 仇美华,等. 2007. 水稻根系细胞膜H+-ATPase对铵硝营养的响应差异.中国水稻科学,21(4):360-366.
(Di T J, Zhu Y Y, Qiu M H, et al. 2007. Response of plasma membrane H+-ATPase of rice root to ammonium and nitrate nutrition. Chinese J Rice Sci, 21(4): 360-366.[in Chinese])(1)
[4] 高守疆,陈升枢,李明启. 1989. 不同磷营养水平对烟草叶片光合作用和光呼吸的影响. 植物生理学报, 3: 281-287.
(Gao S J, Chen S S, Li M Q. 1989. Effects of phosphorus nutrition on photosynthesis and photorespiration in tobacco leaves Acta Phytophysiologica Sinica, 3:281-287..(1)
[5] 葛体达, 唐东梅, 芦 波,等. 2008. 番茄根系分泌物、木质部和韧皮部汁液组分对矿质氮和有机氮营养的响应. 园艺学报, 35(1): 39-46.
(Ge T D, Tang D M, Lu B,et al. 2008. Influence of organic and inorganic nitrogen supply on the composition of tomato seedling root exudates, xylem and phloem sap grown in hydroponic culture. Acta horticulturae Sinica, 35(1):39-46[in Chinese]).(2)
[6] 何园球. 1993. 我国热带亚热带森林土壤肥力状况与利用途径. 红壤生态研究(第二集).南昌: 江西科学技术出版社, 16-22.
(He Y Q. 1993.The status and utilization approach of forest soil fertility in tropical and subtropical China. Red Soil Ecological Research (Volume Ⅱ), Nanchang, China: Jiangxi Science and Technology Press, 16-22.(1)
[7] 胡正华, 李涵茂, 杨燕萍,等. 2010. 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响. 环境科学, 31(8): 1726-1732.
(Hu Z H, Li H M, Yang Y P,et al. 2010. Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest. Environmental Science, 31(8): 1726-1732[in Chinese]).(2)
[8] 李宝珍, 范晓荣, 徐国华. 2009. 植物吸收利用铵态氮和硝态氮的分子调控.植物生理学通讯,45(1):80-88.
(Li B Z, Fan X R, Xu G H. 2009. Molecular regulation for uptake and utilization of ammonium and nitrate in plant. Plant Physiology and Molecular Biology,45(1):80-88[in Chinese]).(1)
[9] 李德军, 莫江明, 方运霆,等. 2004. 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24(5): 876-882.
(Li D J, Mo J M, Fang Y T,et al. 2004. Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24(5): 876-882[in Chinese]).(1)
[10] 李德军, 莫江明, 方运霆,等. 2005. 模拟氮沉降对南亚热带良种乔木幼苗生物量及其分配的影响. 植物生态学报, 19(4):543-549.
(Li D J, Mo J M, Fang Y T,et al. 2005. Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 19(4):543-549[in Chinese]).(1)
[11] 林 磊, 周志春. 2009a. 水分和磷素对木荷不同种源苗木生长和磷效率的影响. 应用生态学报, 20(11): 2617-2623.
(Lin L, Zhou Z C. 2009a. Effects of soil moisture condition and phosphorus supply on the seedlings growth and phosphorus efficiency of Schima superba provenances. Chinese Journal of Applied Ecology, 20(11): 2617-2623[in Chinese]).(2)
[12] 林 磊, 周志春, 范辉华,等. 2009b. 木荷稳定碳同位素分辨率的种源差异. 应用生态学报, 20(4): 741-746.
(Lin L, Zhou Z C, Fan H H,et al. 2009b. Provenance difference in stable carbon isotope discrimination of Schima superba. Chinese Journal of Applied Ecology, 20(4): 741-746[in Chinese]).(1)
[13] 刘 赣, 张明超, 曾后清,等. 2012. 细胞膜质子泵基因超表达促进水稻种子萌发. 中国水稻科学,26(6):651-655.
(Liu G, Zhang M C, Zeng H Q,et al. 2012. Overexpression of a plasma membrane H+-ATPase gene promotes rice seed germination. Chin J Rice Sci, 26(6):651-655[in Chinese]).(1)
[14] 沈允钢, 程建峰, 胡美君. 2010. 循环光合磷酸化和光合作用. 生命科学,5:471-474.
(Shen Y G, Cheng J F, Hu M J. 2010.Cyclic photophosphorylation and photosynthesis. Chinese Bullet of life Sciences, 5:471-474[in Chinese]).(1)
[15] 师进霖, 姜跃丽, 宋云华. 2009. 氮素形态对黄瓜幼苗生长及氮代谢酶活性影响. 中国农学通报,25(22):225-227.
(Shi J L, Jiang Y L, Song Y H. 2009. Effects of different ratios of nitrogen forms on enzyme activities related to nitrogen metabolism and growth of cucumber seedlings. Chinese Agricultural Science Bulletin, 25(22):225-227[in Chinese]).(1)
[16] 遆超普, 颜晓元. 2010. 基于氮排放数据的中国大陆大气氮素湿沉降量估算. 农业环境科学学报, 29(8): 1606-1611.
(Ti C P, Yan X Y. 2010. Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data. Journal of Agro-Environment Science, 29(8): 1606-1611[in Chinese]).(4)
[17] 王小治, 朱建国, 高 人,等. 2004. 太湖地区氮素湿沉降动态及生态学意义: 以常熟生态站为例. 应用生态学报,15(9): 1616-1620.
(Wang X Z, Zhu J G, Gao R,et al. 2004. Dynamics and ecological significance of nitrogen wet deposition in Taihu lake region-taking Changshu agro-ecological experiment station as an example. Chinese Journal of applied ecology, 15(9): 1616-1620[in Chinese]).(1)
[18] 吴 楚, 王政权, 孙海龙,等. 2005. 氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响. 林业科学,41(4):31-36.
(Wu C, Wang Z Q, Sun H L, et al. 2005. Effects of different concentrations of nitrogen and phosphorus on chlorophyⅡ biosynthesis, chlorophyⅡ a fluorescence, and photosynthetic rate in Larix olgensis seedlings. Scientia Silvae Sinicae, 41(4):31-36[in Chinese]).(1)
[19] 吴 巍, 赵 军. 2010. 植物对氮素吸收利用的研究进展. 中国农学通报,26(13):75-78.
(Wu W, Zhao J, 2010. Advances on plants' nitrogen assimilation and utilization. Chinese Agricultural Science Bulletin, 26(13):75-78[in Chinese]).(1)
[20] 许征宇, 狄廷均, 朱毅勇,等. 2008. 水稻根系细胞膜H+-ATPase对缺磷的反应. 植物营养与肥料学报,14(2):221-226.
(Xu Z Y, Di T J, Zhu Y Y,et al. 2008. Response of plasma membrane H+-ATPase of rice roots to the P deficiency. Plant Nutrition and Fertilizer Science, 14(2):221-226.[in Chinese])(1)
[21] 余 琳,张 萍,周志春,等. 2005. 木荷种源苗期干物质积累和分配差异. 林业科学研究,18(1):91-94.
(Yu L, Zhang P, Zhou Z C,et al. 2005. Differences of Schima superba provanances in seedling dry matter accumulation and allocation. Forest Research, 18(1):91-94[in Chinese]).(1)
[22] 张 萍,周志春,金国庆,等. 2006. 木荷种源遗传多样性和种源区初步划分. 林业科学,42(2):38-42.
(Zhang P, Zhou Z C, Jin G Q, et al. 2006. Genetic diversity analysis and provenance zone allocation of Schima superba in China using RAPD Markers. Scientia Silvae Sinicae, 42(2):38-42[in Chinese]).(1)
[23] 张 蕊,王 艺,金国庆,等. 2013a. 施氮对木荷3个种源幼苗根系发育和氮磷效率的影响. 生态学报,33(12): 3611-3621.
(Zhang R, Wang Y, Jin G Q,et al. 2013a. Nitrogen addition affects root growth, phosphorus and nitrogen efficiency of three provenances of Schima superba in barren soil. Acta Ecologica Sinica, 33(12): 3611-3621[in Chinese]).(1)
[24] 张 蕊,王 艺,金国庆,等. 2013b. 氮沉降模拟对木荷不同种源幼苗叶片生理及光合特性的影响. 林业科学研究,26(2):207-213.
(Zhang R, Wang Y, Jin G Q,et al. 2013b. The effects of nitrogen deposition on leaf physiological and photosynthetic characters of Schima superba seedlings from three provenances. Forest Research, 26(2):207-213[in Chinese]).(1)
[25] 郑利霞, 刘学军, 张福锁. 2007. 大气有机氮沉降研究进展. 生态学报, 27(9): 3828-3834.
(Zheng L X, Liu X J, Zhang F S. 2007. Atmospheric deposition of organic nitrogen: a review. Acta Ecologica Sinica, 27(9): 3828-3834[in Chinese]).(2)
[26] 周志春, 范辉华, 金国庆,等. 2006. 木荷地理遗传变异和优良种源初选.林业科学研究, 19(6): 718-724.
(Zhou Z C, Fan H H, Jin G Q,et al. 2006. Geographic genetic variation and preliminary selection of superior provinance in Schima superba. Forest Research, 19(6): 718-724[in Chinese]).(1)
[27] Anderson J M,Ingram J S I. 1993. Tropical soil biology and fertility: a handbook of methods. 2th edn. CAB International, Wallingford press.(1)
[28] Bremner J M, Mulvaney C S. 1982. Nitrogen-total.//Page A L, Miller R H, Keeney D R, eds. Methods of soil analysis. Part 2: chemical and microbial properties, Agronomy Monograph 9. Agronomy Society of America, Madison, 595-624.(1)
[29] Britto D T, Kronzucker H J. 2002. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 159(6): 567-584(2)
[30] Desnos T. 2008. Root branching responses to phosphate and nitrate. Plant Biology, 11(1):82-87.(1)
[31] Johansson O, Nordin A, Olofsson J, et al. 2010. Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytologist, 188(4): 1075-1084.(1)
[32] Ishigaki K. 1974. Comparison between ammonium-nitrogen and nitrate-nitrogen on the effect of tea plant growth. Japanese Agricultural Research Quaternary, 8(2): 101-105(1)
[33] Keene W C, Montag J A, Maben J R, et al. 2002. Organic nitrogen in precipitation over Eastern North America. Atmospheric Environment, 36(28): 4529-4540.(1)
[34] Köchy M, Wilson S D. 2001. Nitrogen deposition and forest expansion in the northern Great Plains. Journal of Ecology, 89(5): 807-817.(1)
[35] Liu X, Zhang Y, Han W, et al. 2013. Enhanced nitrogen deposition over China. Nature, 494(7438): 459-462.(1)
[36] Liu X, Duan L, Mo J, et al. 2011. Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut, 159(10):2251-2264.(1)
[37] Magaña R H, Adamowicz S, Pagès L. 2009. Diel changes in nitrogen and carbon resource status and use for growth in young plants of tomato (Solanum lycopersicum). Annals of Botany, 103(7):1025-1037.(2)
[38] Mo J M, Li D J, Gundersen P. 2008. Seedling growth response of two tropical tree species to nitrogen deposition in southern China. European Journal of Forest Research, 127(4): 275-283.(1)
[39] Ruan J Y, Gerendás J, Härdter R, et al. 2007. Effect of Nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) Plants. Annals of Botany, 99(2):301-310.(1)
[40] Sickman J O, LeydeckerA, Melack J M. 2001. Nitrogen mass balances and abiotic controls on N retention and yield in high-elevation catchments of the Sierra Nevada, California, United States. Water Resources Research, 37(5): 1452-1461.(1)
[41] Walch L P, Neumann G, Bangerth F, et al. 2000. Rapid effects of nitrogen form on leaf morphogenesis. J Exp Bot, 51(343): 227-237.(1)
[42] Wang L, Mou P P, Jones R H. 2006. Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research, 36(1): 164-173.(2)