林业科学  2015, Vol. 51 Issue (4): 141-147   PDF    
DOI: 10.11707/j.1001-7488.20150418
0

文章信息

宋秀华, 李传荣, 许景伟, 胡丁猛, 王超
Song Xiuhua, Li Chuanrong, Xu Jingwei, Hu Dingmeng, Wang Chao
元宝枫、雪松挥发物释放的昼夜节律
Diurnal Rhythm of Emission of Volatile Compounds Emission from Acer truncatum and Cedrus deodara
林业科学, 2015, 51(4): 141-147
Scientia Silvae Sinicae, 2015, 51(4): 141-147.
DOI: 10.11707/j.1001-7488.20150418

文章历史

收稿日期:2014-05-21
修回日期:2014-11-07

作者相关文章

宋秀华
李传荣
许景伟
胡丁猛
王超

元宝枫、雪松挥发物释放的昼夜节律
宋秀华1, 李传荣2, 许景伟3, 胡丁猛3, 王超1    
1. 山东农业大学园艺科学与工程学院 泰安 271018;
2. 泰山森林生态站/山东农业大学农业生态与环境重点实验室 泰安 271018;
3. 山东省林业科学研究院 济南 250014
摘要:【目的】 元宝枫、雪松是华北地区常见的绿化树种,阔叶树和针叶树的典型代表,研究其挥发物释放规律并分析其对环境的影响,通过树种合理配置,科学指导绿地游憩林建设,创造更有利于人体健康的绿地环境。 【方法】 采用固相微萃取结合气质联用仪(SPME-GC-MS),选择生长健康的多年生元宝枫、雪松植株,摘取当年生向阳叶片与枝叶,在7月中旬从8:00—次日5:00,每隔3 h测定其挥发物成分与含量,同时同步测定植株生长环境的温度与湿度。采用SPSS软件对各数据进行整理分析。 【结果】 1)元宝枫叶片挥发物主要成分是C6,C8的酯、醇、醛和萜烯类化合物,乙酸叶醇酯、乙酸己酯、3-己烯醇、3-己烯醛和β-石竹烯约占挥发物总量的70.0%以上,使叶片呈现青叶香。各化合物的释放规律不同,主要成分C8酯类化合物释放高峰在14:00,低谷在5:00; C15倍半萜类化合物释放呈现"2峰2谷"型,高峰在17:00和5:00左右,低谷出现在8:00和23:00左右。相关分析表明,3-己烯醛与3-己烯醇极显著正相关,乙酸叶醇酯与3-己烯醛、3-己烯醇极显著负相关,其他挥发物间无显著相关。2)雪松枝叶挥发物主要是萜烯类物质,相对含量达84.0%以上,主要成分是α、β-蒎烯、β-月桂烯、D-柠檬烯、β-石竹烯、吉马烯D,使雪松枝叶呈现树脂香。各化合物的释放规律亦不同,大多数单萜物质如α、β-蒎烯、β-月桂烯、D-柠檬烯等,释放高峰在14:00左右,低谷出现在23:00—次日2:00; 倍半萜类物质如β-石竹烯、吉马烯D释放高峰在17:00和2:00,23:00和5:00则达最低。相关分析表明,α、β-蒎烯、β-月桂烯、D-柠檬烯等4种单萜化合物相关性较高; β-石竹烯与吉马烯D极显著相关,与单萜无显著相关。3)挥发物的释放除具有昼夜节律外也受到外界环境的影响,相关分析表明,挥发物总峰面积与温度呈正相关,与相对湿度呈负相关。【结论】 元宝枫叶片挥发物以C8的酯类为主,雪松枝叶挥发物以C10,C15的萜烯类为主,这与挥发物合成途径有关,各挥发物释放具有不同的昼夜节律性。通常在一定范围内随温度升高、相对湿度减小,挥发物释放量增加。
关键词元宝枫    雪松    挥发物    昼夜节律    
Diurnal Rhythm of Emission of Volatile Compounds Emission from Acer truncatum and Cedrus deodara
Song Xiuhua1, Li Chuanrong2, Xu Jingwei3, Hu Dingmeng3, Wang Chao1    
1. College of Horticulture and Science Engineering, Shandong Agricultural University Tai'an 271018;
2. Taishan Forest Ecosystem Research Station/Key Laboratory of Agricultural Ecology and Environment, Shandong Agricultural University Tai'an 271018;
3. Shandong Research Institute of Forestry Jinan 250014
Abstract: [Objective] Most volatiles released from green plants have significant physiological activity, such as regulating plant growth, enhancing its resistance, inhibiting the growth of air microorganisms, and also producing different influences on human physiology and psychology. Acer truncatum and Cedrus deodara are common urban greening tree species, typical representative of hardwoods and conifers in Northern China. In this paper, the diurnal rhythm of volatiles released from the two species was detected and the environmental impact of the volatiles was investigated, to provide scientific reference for the urban green space recreation construction by proper tree species configuration and create the green environment more conducive to human health. [Method] The sunward leaves and branches of perennial and heathy A. truncatum and C. deodara were collected, and the volatiles were measured by using the SPME-GC-MS technique every 3 hours from 8:00 to 5:00 in the mid July. At the same time the temperature and humidity of the environment were measured. The SPSS software was used to analyze the data. [Result] 1) The C6 and C8 esters, alcohols, aldehydes and terpenes were the dominant components released from A. truncatum. The 3-hexenyl acetate, hexyl acetate, 3-hexen-1-ol, 3-hexenal, and β-caryophyllene accounted for 70% of the total volatiles, which made leaves give up the green leaf fragrance. Different compounds had different release patterns. The C8 esters, a major volatile, had the releasing peak at 14:00, and the lowest releasing point at 5:00. The C15 sesquiterpenes appeared two peaks and two valleys of the releases, the peaks were at 17:00 and 5:00, and the valleys were at 8:00 and 23:00, respectively. The correlation analysis showed that there was positive correlation between 3-hexen-1-ol and 3-hexenal, and negative correlations between 3-hexenyl acetate with 3-hexen-1-ol and 3-hexenal. No significant correlations were found between other compounds. 2) The volatiles of C. deodara leaves were mainly composed of terpenes which accounted for 84% of the total volatiles. The main components were α, β-pinene, β-myrcene, D-limonene, β-caryophyllene and Germacrene D, which made the branches and leaves give up resin odor. Most of monoterpenes, such as α, β-pinene, β-myrcene, and D-limonene, had their release peaks at 14:00, and the lowest release valleys occurred from 23:00 to 2:00. Most of sesquiterpenes, such as β-caryophyllene, and Germacrene D, had their release peaks at 17:00 and 2:00, and the release valleys at 23:00 and 5:00. The correlation analysis indicated that there were positive correlations between α, β-pinene, β-myrcene and D-limonene, and positive correlation between β-caryophyllene and Germacrene D. However, no significant correlations were found between other monoterpenes and sesquiterpenes. 3) The volatile release was also influenced by environmental factors, except with diurnal rhythm. Total peak area of volatiles was positively correlated with temperature and negatively correlated with relative humidity. [Conclusion] The main components of the volatiles from A. truncatum were C8 esters, and the main components of volatiles from C. deodara were C10, C15 terpenes, which were related with volatiles synthesis pathway. Different compounds had different diurnal rhythms. The volatile emission rates increased with the temperature and declined with the relative humidity.
Key words: Acer truncatum    Cedrus deodara    volatile compounds    diurnal cycle    

绿色植物在吸收CO2释放O2的同时,也释放次生代谢产物,即挥发性有机化合物(volatile organic compounds,VOCs),也称为挥发物(Volatiles)。挥发物可以调节植物的生长、发育及对逆境的适应能力(韩芬等,2008Kivimäenpää et al.,2013);同时还可以抑制空气微生物生长(孟雪等,2010),还会对人体及其他动物产生心理及生理的影响(Jo et al.,2010王艳英等,2013)。 挥发物中有许多成分具有较强的生理活性,特别是萜类化合物,其种类繁多,结构复杂,性质各异,生理活性表现多种多样(王峥涛等,2009)。因此,城市植被建设不应只考虑到景观功能,更要考虑到其生态功能,特别能引起人体生理心理变化的植物挥发物的释放情况,通过树种的合理配置,创造一个更有利于人类健康的绿地环境,这已成为科研和生产领域亟待解决的理论和技术问题。

元宝枫(Acer truncatum)为落叶乔木,树冠优美,是华北地区常见的绿化树种,也常作为荒山绿化或风景林的伴生树种。雪松(Cedrus deodara)为常绿乔木,枝条开展,树形优美,是世界著名观赏树种,孤植、列植、群植及与其他树种混置等多种配置方式,应用范围广泛。元宝枫和雪松作为华北地区常见的城市绿化树种,阔叶树和针叶树的典型代表,研究其挥发物的释放,具有一定的典型性。已有学者研究了元宝枫、雪松等常见绿化树种挥发物的释放情况(张风娟等,2007盖苗苗等,2010),对于树木挥发物释放昼夜节律性的研究,多集中于挥发物释放与昆虫取食行为的关系(王鸿斌等,2005杨桦等,2011)。因此,本试验采用离体采样固相微萃取(SPME)结合气相色谱质谱联用仪(GC-MS)分析元宝枫、雪松枝叶挥发物的昼夜变化规律并分析对人居环境的影响,旨在预测挥发物的释放量,为人们绿地游憩提供参考,并通过树种的合理组合创造出更有效、更有利于人体健康的植物环境。

1 材料与方法 1.1 试验材料与取样方法

山东农业大学校园内生长健康的元宝枫(株高约5.6 m,胸径约15.4 cm)和雪松(株高约11.2 m,胸径约40.5 cm),在7月中旬选取树木中部向阳当年生枝叶,于2:00,5:00,8:00,11:00,14:00,17:00,20:00,23:00共8个时间点采集分析,每次采样3次重复,每重复叶片约20片。

1.2 测定方法

挥发物采集与分析方法(SPME-GC-MS):采用固相微萃取法结合日本岛津公司生产的GC-MS-QP 2010 plus气-质联用仪,即SPME-GC-MS法。元宝枫称取新鲜功能叶10 g,剪成 0.5 cm × 0.5 cm碎片,放入100 mL萃取瓶中,铝箔纸封口;雪松称取新鲜枝叶(针叶和嫩枝)10 g,剪成0.5 cm段,放入100 mL萃取瓶中,铝箔纸封口。然后50/30 μm DVB/CAR/PDMS萃取头在 40 ℃的温度中顶空萃取30 min,然后将萃取头插入GC-MS进样口,于250 ℃解吸3 min。色谱条件:柱初温 35 ℃,保持2 min,以6 ℃·min-1上升至 100 ℃,再以8 ℃·min-1上升至140 ℃,随后以12 ℃·min-1上升至250 ℃,保留3 min。质谱条件:EI电离源,电子能量70 eV,离子源温度200 ℃,接口温度230 ℃,全扫描模式,扫描范围45~450 m·z-1。化合物定性与定量分析:经NIST08和NIST08S数据库检索定性,按SI相似度>80%的原则作为鉴定结果,取各化合物的峰面积进行比较分析。

1.3 数据分析

采用Microsoft Excel和SPSS软件对数据进行整理、分析和制图,采用SPSS软件对数据进行差异显著性检验和相关分析。

2 结果与分析 2.1 元宝枫挥发物昼夜节律释放

检测到的元宝枫挥发物中主要是酯、醇、醛和萜烯类化合物,表 1所列化合物共21种,占所测化合物相对含量的80.0%以上,有些物质只检测到一次且含量较低,在表中未列出(如丁酸-2-戊烯酯、丁酸己酯、β-罗勒烯等)。酯类物质有5种,醇、醛类物质有5种,萜烯类物质共11种,分别占总种类的23.8%,23.8%和52.4%;相对含量较高的物质主要有乙酸叶醇酯、乙酸己酯、 3-己烯醇、3-己烯醛和β-石竹烯,占总量的70.0%以上。其中,3-己烯醛、3-己烯醇和乙酸叶醇酯,具有青叶香味,乙酸己酯具有水果香味,这些主要成分使元宝枫叶片呈现青叶香气,可使人产生愉悦意识(Jo et al.,2010)。

表 1 元宝枫挥发物昼夜节律释放(峰面积) Tab.1 Diurnal cycle of emission of volatiles from A. truncatum (Peak area)

挥发物的昼夜释放节律可分为3类,C6醇、醛类的释放高峰在17:00和2:00—5:00,低谷在14:00和20:00左右;C8酯类化合物释放高峰在14:00,低谷在5:00;C10单萜类化合物释放量白天高于夜晚,在23:00—2:00间释放量最低,多数C15倍半萜类化合物释放呈现“2峰2谷”型,高峰在17:00和5:00左右,低谷出现在8:00和23:00左右(表 1)。

元宝枫总挥发物峰面积呈现“2峰2谷”型变化,从早8:00开始逐渐降至11:00,随后升高至17:00达最高峰,晚23:00降至最低,凌晨2:00出现次高峰。主要挥发物乙酸叶醇酯、β-石竹烯、乙酸己酯的峰面积变化与此相似,3-己烯醛、3-己烯醇变化规律与此相反(图 1)。同时对此5种主要挥发物峰面积值进行Pearson相关分析(表 2),3-己烯醛与3-己烯醇呈极显著正相关,与乙酸叶醇酯呈极显著负相关;3-己烯醇与乙酸叶醇酯呈极显著负相关;其他挥发物之间无显著相关性,这与图 1中的变化趋势一致。

图 1 元宝枫主要挥发物峰面积昼夜变化及温湿度变化 Fig. 1 Diurnal variation of the main compounds peak area from A. truncatum and the variations of temperature and relative humidity
表 2 元宝枫主要挥发物峰面积的相关系数 Tab.2 Correlation coefficients of the main compounds from A. truncatum
2.2 雪松挥发物昼夜节律释放

检测到的雪松挥发物主要是萜烯类化合物,表 3所列化合物共26种,占所测化合物相对含量的87.0%以上。其中,酯类物质有3种,醇类物质有1种,萜烯类物质共22种,单萜8种,倍半萜14种,萜烯类物质的相对含量达84.0%以上。这些萜烯类物质对人体均有益,其中α-蒎烯、β-蒎烯、β-月桂烯具有杀菌、抑菌、镇咳、祛痰、抗炎作用,柠檬烯可治疗胆结石,同时这些物质可令人精神放松,利于人们的身心健康(孙启祥等,2004),这些化合物使雪松枝叶呈现树脂香。

表 3 雪松挥发物昼夜节律释放(峰面积) Tab.3 Diurnal cycle of emission of volatiles from C. deodara (Peak area)106

所测挥发物的昼夜释放规律可分为3类:大多数单萜物质,如α-蒎烯、β-蒎烯、β-月桂烯、D-柠檬烯等释放高峰在14:00左右,低谷出现在23:00—次日2:00;大多数倍半萜类物质,如长叶烯、β-石竹烯、α-石竹烯等,呈现“2峰2谷”型变化,释放高峰在17:00和2:00,在23:00和5:00达最低;酯类物质如乙酸叶醇酯、乙酸己酯、乙酸龙脑酯等白天释放量高于夜晚,且在2:00—5:00达最低(表 3)。

雪松总挥发物峰面积日变化规律呈现“2峰2谷”型,从早8:00开始逐渐升高至14:00达高峰,晚23:00降至最低,次日凌晨2:00出现次高峰,5:00达谷底,与元宝枫总挥发物的变化规律相似。其中主要单萜类物质的峰面积在8:00—14:00较高,在23:00—次日2:00达到谷底;主要倍半萜类物质释放高峰在17:00和2:00,23:00和5:00则达最低。总之,雪松枝叶挥发物的释放高峰在14:00—17:00,低谷在23:00和5:00(图 2)。同时对6种主要挥发物峰面积值进行Pearson相关分析(表 4),α-蒎烯与β-蒎烯极显著相关,与D-柠檬烯显著相关;β-蒎烯与β-月桂烯极显著相关,与D-柠檬烯显著相关;β-月桂烯与D-柠檬烯极显著相关,这4种单萜物质相关性较高。β-石竹烯与吉马烯D极显著相关,与单萜物质无显著相关。

图 2 雪松主要挥发物峰面积昼夜变化及温湿度变化 Fig. 2 Diurnal variation of the main compounds peak area from C. deodara and the variations of temperature and relative humidity
表 4 雪松主要挥发物的相关系数 Tab.4 Correlation coefficients of the main compounds from C. deodara
2.3 温度、湿度对元宝枫、雪松挥发物释放的影响

环境因子如温度、湿度等影响着植物的代谢活动,进而对枝叶挥发物的释放产生间接的影响。本试验的结果表明(图 12):在不考虑其他影响因子的条件下,在一定范围内随温度升高、湿度减小,挥发物的释放量增加,这与已有研究结论较一致(李娟等,2011Ziru et al.,2011)。

图 12表明,温度升高,湿度降低时段,挥发物总峰面积较高。8:00开始,温度增高,光照增强,植物生理活动逐渐增加,光合合成物质增多,伴随的次生代谢物质释放量逐渐增大,在17:00达高峰。随后光照减弱,光合作用逐渐停止,湿度逐渐增大,部分气孔关闭,挥发物释放量减少,光合产物在植株体内仍进行着代谢活动(相比白天要弱),次生代谢产物在体内逐渐累积,挥发物达到一定浓度时,气孔内外的压强差使气孔张开,储藏的挥发物释放,在2:00左右出现小高峰。从表 5可知,挥发物总峰面积与温度呈正相关,与湿度呈负相关,这与图 12的变化趋势是一致的。

表 5 元宝枫、雪松总挥发物峰面积
与温湿度的相关系数
Tab.5 Correlation coefficients between the total
volatile compounds and temperature and relative humidity
3 结论与讨论

挥发物的昼夜释放节律,不同树种表现出不同的规律,特别是阔叶树和针叶树表现出不同的规律,通常认为在正午和午夜有2个释放高峰(李金龙等,1994)。Li等(2003)研究复叶槭(Anoplophora glabripennis)7,8月的释放规律时发现,高峰分别在14:00和10:00左右,且挥发物种类和相对含量明显不同。胡永建等(2007)研究马尾松(Pinus massoniana)萜烯类化合物释放高峰多在10:30,低峰期在13:30和22:30,湿地松的释放高峰在12:00—15:00之间;李娟等(2011)研究侧柏(Biota orientalis)春季挥发物释放规律呈现“3峰2谷”型,即5:00,13:00,19:00呈现高峰,23:00— 1:00和17:00呈现低谷。在许多植物中,单萜合成依赖于温度和光照,如意大利松(Pinus pinea)光下释放的挥发物远大于暗处,Standt等(1997)认为单萜释放的最初来源是植物体内重新合成而非树脂道中储存的。但同时正午强光照导致气孔部分关闭,也会影响挥发物的释放。本研究中,元宝枫和雪松枝叶挥发物的释放高峰集中在 8:00,17:00和2:00,具体挥发物的释放规律不同,但主要成分释放情况与此相同;挥发物的释放受环境条件的影响,在温度升高、湿度减小的时段,挥发物的释放量增加。

植物挥发物之间还存有一定的相关性,这与挥发物产生的前体物质及合成酶有关,如Julian等(2003)发现矮牵牛(Petunia hybrid line W115)晚间PAL和SAM表达增多,促使合成苯环烃类物质增多,花的香气更浓。Ben等(2010)发现蚕豆(Vicia faba)的主要挥发物不仅呈现昼夜节律变化,而且3-己烯醇与乙酸叶醇酯、甲基庚烯酮与乙酸叶醇酯显著相关。元宝枫醛、醇、酯类挥发物主要通过脂肪酸合成途径产生,在代谢过程中受植物体内代谢酶的影响,醛在醇脱氢酶ADH作用下生成醇,然后醇在酰基转移酶AAT作用下生成酯,3-己烯醛和3-己烯醇作为乙酸叶醇酯的前体物质,白天光合作用旺盛期合成乙酸叶醇酯量高,晚上合成量降低,造成3-己烯醛和3-己烯醇累积,呈现与乙酸叶醇酯负相关变化。雪松针叶挥发物主要通过类异戊二烯合成途径产生,萜类合成酶(TPS)分别催化前体底物香叶酯二磷酸(GPP)、法呢基焦磷酸(FPP)、牻牛儿基焦磷酸(GGPP),形成单萜、倍半萜和二萜(龚治等,2010),但是同样底物的酶在不同植物体内的产物却不尽相同。本试验中,雪松枝叶挥发物中α-蒎烯、β-蒎烯、β-月桂烯、D-柠檬烯等这4种单萜物质相关性较高,而β-石竹烯与吉马烯D则极显著相关,这与单萜和倍半萜具体合成途径和酶有关。

元宝枫、雪松作为阔叶树和针叶树的典型代表,其挥发物主要成分不同且呈现不同的昼夜释放规律,但主要是对人体有益的成分。元宝枫释放的主要是酯、醇、醛和萜烯类化合物,其中C8酯类化合物释放高峰在14:00,低谷在5:00;雪松释放的主要是萜烯类物质,其中单萜类物质释放高峰在14:00左右,低谷在23:00—2:00,倍半萜类物质释放高峰在17:00和2:00,低谷在23:00和5:00。树木释放到空气的挥发物多为微量或痕量物质,浓度到达怎样程度才能对人体产生影响还需要做进一步研究。同时各类挥发物由于产生和释放机理不同呈现的变化规律各不相同,呈现这些规律的原因也有待于进一步研究。

参考文献(References)
[1] 盖苗苗, 周春玲, 曲宁, 等. 2010. 雪松的挥发性物质成分及抑菌效益研究. 中国农学通报, 26(7): 311-313.
(Gai M M, Zhou C L, Qu N, et al. 2010. The study of volatile substances from Cedar and its antibacterial benefit. Chinese Agricultural Science Bulletin, 26(7): 311-313[in Chinese]).(1)
[2] 龚治, 李典谟, 张真. 2010. 针叶树萜类合成酶研究进展. 林业科学, 46(1): 123-130.
(Gong Z, Li D M, Zhang Z. 2010. Research progress of terpene synthases in conifers. Scientia Silvae Sinicae, 46(1): 123-130[in Chinese]).(1)
[3] 韩芬, 王辉, 边银霞, 等. 2008. 华北落叶松枝叶挥发性物质的化学成分及其化感作用. 应用生态学报, 19(11): 2327-2332.
(Han F, Wang H, Bian Y X, et al. 2008. Chemical components and their allelopathic effects of the volatiles from Larix principis-rupprechtii leaves and branches. Chinese Journal of Applied Ecology, 19(11): 2327-2332[in Chinese]).(1)
[4] 胡永建, 任琴, 金幼菊, 等. 2007. 马尾松(Pinus massoniana)、湿地松(Pinus elliottii)挥发性化学物质的昼夜节律释放. 生态学报, 27(2): 565-570.
(Hu Y J, Ren Q, Jin Y J, et al. 2007. Diurnal cycle of emission of volatile compounds from Pinus massoniana and Pinus elliottii. Acta Ecologica Sinica, 27(2): 565-570.[in Chinese])(1)
[5] 李金龙, 白郁华, 胡建信, 等. 1994. 油松排放萜烯类化合物浓度的日变化及排放速率的研究. 中国环境科学, 14(3): 165-169.
(Li J L, Bai Y H, Hu J X, et al. 1994. Diurnal variation in the concentration of terpenes and its emission rate measurements from oil pine. China Environmental Science, 14(3): 165-169[in Chinese]).(1)
[6] 李娟, 王成, 彭镇华, 等. 2011. 侧柏春季挥发物浓度日变化规律及其影响因子研究. 林业科学研究, 24(1):82-90.
(Li J, Wang C, Peng Z H, et al. 2011. The diurnal variation and influence factors of VOC of Platycladus orientalis in spring. Forest Research, 24(1):82-90[in Chinese]).(2)
[7] 孟雪, 王志英, 吕慧. 2010. 绿萝和常春藤主要挥发性成分及其对5种真菌的抑制活性. 园艺学报, 37(6): 971-976.
(Meng X, Wang Z Y, Lv H. 2010. The volatile constituents analysis of Scindapsus aureum and Hedera nepalensis var. sinensis and their inhibition against five fungi. Acta Horticulturae Sinica, 37(6): 971-976[in Chinese]).(1)
[8] 孙启祥, 彭镇华, 张齐生. 2004. 自然状态下杉木木材挥发物成分及其对人体身心健康的影响. 安徽农业大学学报, 31(2): 158-163.
(Sun Q X, Peng Z H, Zhang Q S. 2004. Volatiles of wood of Chinese fir in nature and its effect on human health. Journal of Anhui Agricultural University, 31(2): 158-163[in Chinese]).(1)
[9] 王鸿斌, 张真, 孔祥波, 等. 2005. 油松萜烯类挥发物释放规律与红脂大小蠹危害的关系. 北京林业大学学报, 27(2): 75-80.
(Wang H B, Zhang Z, Kong X B, et al. 2005. Relationship between release regularity of volatiles from Pinus tabulaeformis and the damage by Dendroctonus valens. Journal of Beijing Forestry University, 27(2): 75-80[in Chinese]).(1)
[10] 王艳英, 王成, 郄光发, 等. 2013.4个针叶树种枝叶气味对小白鼠自发行为影响的比较分析, 林业科学, 49(5): 188-193.
(Wang Y Y, Wang C, Qie G F, et al. 2013. Comparative analysis on effects of VOCs from branches and leaves of four conifer species on locomotor activity of mice. Scientia Silvae Sinicae, 49(5): 188-193[in Chinese]).(1)
[11] 王峥涛, 梁光义. 2009. 中药化学. 上海: 上海科学技术出版社, 200-222.
(Wang Z T, Liang G Y. 2009. Chemistry of Chinese material medica. Shanghai: Shanghai Science and Technology Publishing House, 200-222.[in Chinese])(1)
[12] 杨桦, 杨伟, 杨茂发, 等. 2011. 法国冬青和光皮桦挥发物日节律及云斑天牛的触角电位反应. 应用生态学报, 22(2): 357 -363.
(Yang H, Yang W, Yang M F, et al. 2011. Diurnal rhythm of Viburnum awabuki and Betula luminifera volatiles and electroantennogram response of Batocera horsfieldi. Chinese Journal of Applied Ecology, 22(2): 357 -363[in Chinese]).(1)
[13] 张风娟, 李继泉, 徐兴友, 等. 2007. 皂荚和五角枫挥发性物质组成及其对空气微生物的抑制作用. 园艺学报, 34(4): 973-978.
(Zhang F J, Li J Q, Xu X Y, et al. 2007. The volatiles of two greening tree species and the antimicrobial activity. Acta Horticulturae Sinica, 34(4): 973-978[in Chinese]).(1)
[14] Ben W, Salvador G, Toby B, et al. 2010. Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants. Phytochemistry, 71(1): 81-89.(1)
[15] Jo H J, Fujii E, Cho T D. 2010. An experimental study of physiological and psychological effects of pine scent. Journal of the Korea Institute of Landscape Architecture, 38(4): 1-10.(2)
[16] Julian C V, Ric de vos C H, Harrie A V, et al. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry, 62: 997-1008.(1)
[17] Kivimäenpää M, Riikonen J, Ahonen V, et al. 2013. Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure. Environmental and Experimental Botany, 90: 32-42.(1)
[18] Li J G, Jin Y J, Luo Y Q, et al. 2003. Leaf volatiles from host tree Acer negundo: diurnal rhythm and behavior responses of Anoplophora glabripennis to volatiles in field. Acta Botanica Sinica, 45: 177-182.(1)
[19] Staudt M, Bertin N, Hansen U, et al. 1997. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ, 31(S): 145-156.(1)
[20] Ziru L, Ellen A R, Thomos D S. 2011. Effect of temperature on postillumination isoprene emission in oak and poplar. Plant Physiology, 155: 1037-1046.(1)