林业科学  2015, Vol. 51 Issue (3): 93-101   PDF    
DOI: 10.11707/j.1001-7488.20150312
0

文章信息

李媛媛, 张凯, 李霜雯, 严善春
Li Yuanyuan, Zhang Kai, Li Shuangwen, Yan Shanchun
失叶率对小黑杨和兴安落叶松幼苗生物量和叶绿素含量的影响
Effects of Defoliations on the Chlorophyll Contents and Biomass of the Poplar (Populus simonii×P. nigra) and Larix gmelinii Seedlings
林业科学, 2015, 51(3): 93-101
Scientia Silvae Sinicae, 2015, 51(3): 93-101.
DOI: 10.11707/j.1001-7488.20150312

文章历史

收稿日期:2013-11-13
修回日期:2014-05-27

作者相关文章

李媛媛
张凯
李霜雯
严善春

失叶率对小黑杨和兴安落叶松幼苗生物量和叶绿素含量的影响
李媛媛, 张凯, 李霜雯, 严善春     
东北林业大学林学院 哈尔滨 150040
摘要【目的】食叶害虫危害可造成树木失叶,影响树木的生物量及碳储量。研究虫害对杨树及落叶松幼苗生物量和叶绿素含量的影响,可为准确评估食叶害虫不同危害程度对杨树和落叶松碳汇能力的影响提供依据。【方法】选取小黑杨及兴安落叶松幼苗,模拟虫害进行剪叶25%,50%和75%处理,以不剪叶植物作为对照。在剪叶处理后第5,10,15,20天和25天取样,分别测定生物量和叶绿素含量的变化。【结果】生物量测定结果表明:各处理对2种幼苗的株高影响不显著(P>0.05),除落叶松失叶50%的根长显著大于对照(P<0.05)外,其他处理幼苗根长无显著变化。各处理的杨树根部鲜、干质量,全株生物量鲜、干质量均显著低于对照,茎鲜、干质量无显著变化。各处理的兴安落叶松根、茎的鲜、干质量及全株生物量鲜、干质量均显著低于对照。叶绿素测定结果表明:杨树叶片中叶绿素a含量高于叶绿素b,各处理组杨树的叶绿素含量均有不同程度的升高。失叶处理后第5天,处理组叶绿素含量比对照组增多,且失叶75%杨树植株叶绿素a和a+b的含量显著高于对照及失叶25%和50%(P<0.05);第10天,失叶率25%,75%处理组叶绿素b和a+b含量显著高于对照(P<0.05),各处理之间差异不显著;第15天,叶绿素含量各个处理组之间、及与对照差异均不显著(P>0.05);处理后20天,失叶50%的植株叶绿素a,b和a+b的含量显著低于对照和失叶25%(P<0.05),亦低于75%,但差异不显著;第25天,各处理叶绿素含量与对照间差异不显著(P>0.05),失叶50%显著高于失叶25%(P<0.05),亦高于失叶75%,但差异不显著。落叶松针叶中叶绿含量素b高于叶绿素a。落叶松叶绿素含量,在失叶量25%和75%处理组,有先升高后降低再升高的趋势,第5天叶绿素含量增加(P<0.05),第10天叶绿素含量降低(P<0.05),第15天与对照相比无差异,第20天叶绿素含量明显升高(P<0.05),到第25天叶绿素含量与对照相近;失叶量50%处理组,第5,15,20天叶绿素含量与对照相比明显降低(P<0.05),且第5天和20天亦显著低于另外2组处理;第10天与对照及另外2组差异不显著(P﹥0.05),到第25天叶绿素含量明显高于对照和其他2组处理(P<0.05)。【结论】失叶对杨树和兴安落叶松的固碳能力和光合生理反应均有影响,杨树和落叶松通过增加叶绿素含量,提高单位面积的光合能力,在一定程度上补偿其固碳能力的降低和生物量的损失,且杨树的补偿能力强于落叶松。
关键词兴安落叶松    小黑杨    失叶量    生物量    叶绿素    
Effects of Defoliations on the Chlorophyll Contents and Biomass of the Poplar (Populus simonii×P. nigra) and Larix gmelinii Seedlings
Li Yuanyuan, Zhang Kai, Li Shuangwen, Yan Shanchun     
College of Forestry, Northeast Forestry University Harbin 150040
Abstract: Defoliations by leaf/needle-feeding insects can cause significant losses of tree growth, biomass, and carbon storage. Potential effects of artificial defoliations at 0%, 25%, 50% and 75% levels to mimic the defoliator damages on biomass and chlorophyll contents of the poplar (Populus simonii×P. nigra) and larch (Larix gmelinii) seedlings at 5, 10, 15, 20 and 25 days after each treatment were investigated in the current study. Our results showed that there were no significant differences among the treatments in the plant height and root length (P > 0.05) for both tree species, except that 50% larch seedling needle removal resulted in a significant increase of root length (P <0.05). Fresh and dry weights of the poplar seedling roots and whole seedling biomass in the three defoliation treatments were significantly lower than those of the untreated control, whereas the fresh and dry weights of the poplar seedling stems were not different among the treatments and the control. Fresh and dry weights of the larch seedling root, stem and whole seedling biomass in either defoliation group were significantly lower than those in the control group. Defoliations of poplar leaves resulted in different levels of increase in chlorophyll contents ("a" > "b"). Significant increase of chlorophyll contents already occurred at 5th day after the defoliation, with the 75% level being significantly higher than the control and the two lower levels (25% and 50%) for both chlorophyll "a" and "a"+"b" (P<0.05). At 10th day after the defoliation, chlorophyll "a" and "a"+"b" contents of 25% and 75% defoliations were significantly higher than that of the control, and were not different among the treatments. At 15th days after the defoliation, there were no differences in chlorophyll contents among the treatments and the control (P>0.05). At 20th day after the defoliation, chlorophyll "a", "b" and "a"+"b" contents of 50% defoliation were significantly lower than those of 25% defoliation and control; and slightly lower (but not significantly) than those of the 75% level. At 25th day after the defoliation, there were no differences in chlorophyll contents between each treatment and the control (P>0.05). Chlorophyll contents of the 50% defoliation level were significantly higher than those of 25% defoliation treatment, and slightly higher (but not significantly) than those of the 75% level.. In contrast to the poplar leaves, the chlorophyll "b" content was higher than chlorophyll "a" in the larch needles. The chlorophyll contents of larch needles at 25% and 75% defoliation levels showed a pattern of increase-decrease-increase; i.e. increased after the fifth day, decreased after the 10th day, and further decreased to a level similar to the control on the 15th day; its content levels increased again after the 20th day, and reached back to control level at 25th day after the treatments. The larch needle chlorophyll contents in the 50% defoliation group were lower than that of the control at 5th, 15th, and 20th days of the defoliations; the contents at 5th and 20th days were even lower than those in 25% and 75% defoliation groups; the contents at 10th day were not different significantly from the control and 25% and 75% defoliation groups. At 25th day after the 50% defoliation, chlorophyll contents in the larch needles were significantly higher than those of control and 25% and 75% defoliation groups. Our results showed that defoliations have significant impacts on carbon sequestration and photosynthetic physiological responses of both poplar and larch seedlings. Increasing the chlorophyll contents and improving the photosynthesis efficacy (per unit area) should compensate the decreases of carbon sequestration and biomass loss caused by the defoliations to some degrees, and polar seedlings seemed to show a stronger compensation ability than do the larch seedlings.
Key words: Larix gmelinii    Populus simonii×    P. nigra    defoliation    biomass    chlorophyll    

植物在长期进化过程中产生许多抵抗逆境的策略,并通过组成型表达或损伤后诱导产生(Kempel et al.,2011)。在植物和逆境的关系中,一方面逆境会对植物的生长产生不良的影响,另一方面植物也会对逆境采取某些应对措施。成功的抗逆机制可以使植物在本应该致死的条件下存活,在可能降低作物产量的情况下保持一定的生产力(杨广兴等,2007)。食叶害虫可引起叶片破损或落叶,从而影响叶片的光合作用,导致同化产物的合成减少,最终影响到植物的生长量;国内外学者在这方面进行了许多研究。

植物生物量是单位面积植物积累物质的数量(干质量kg ·hm-2,g ·m-2或能量kJ ·m-2)。生物量对生态系统机构和功能的形成具有十分重要的作用,是生态系统的功能指标和获取能量能力的集中表现(郭娜等,2011)。生物量累积是人工林有机碳累积的主要方式,碳汇作用显著。目前,国内许多学者对森林生态系统的碳储量进行调查研究,徐新良等(2007)认为中国森林植被的碳汇功能主要来自于人工林的贡献,而且随着幼龄林、中龄林碳储量和碳密度的增长,中国森林植被的碳汇功能将进一步增强。关于人工林的碳储量研究中,对杉木(Cunninghamia lanceolata)、毛竹(Phyllostachys edulis)等树种的报道较多,李朝(2010)利用相对生长法研究了间伐对于徐州市石灰岩山地侧柏(Platycladus orientalis)人工林总生物量、单株生物量和径级生物量的影响。李春明等(2008)研究利用相容性生物量模型对长白落叶松(Larix olgensis)人工林生物量进行计算,分析了间伐对林分总生物量、树干生物量、树枝生物量和树叶生物量的影响。病虫害阻碍了林业的发展,而约80%的森林病虫灾害发生在人工林内(Royle,1997;宋玉双等,2011)。遭受松墨天牛(Monahamus alternatus)危害后的云南松(Pinus yunnanensis)林(孙宝刚,2012)、伊藤厚丝叶蜂(Pachynematus itoi)危害后的落叶松(Larix spp.)(王志明,2006),被害木与健康木相比生物量降低。

叶片(针叶)是林木进行光合作用来固定空气中碳的主要同化器官,叶绿素是地球上最重要的光合色素,是植物体进行光合作用从而进行第一性生产的重要物质。叶绿素含量能间接反映植物的生长状况与光合作用能力,也是反应植物抗逆生理特性的指标之一。虫害使叶绿素含量增加、光合作用增强,从而使被害植物得到补偿(McGarvey et al.,2004李辉等,2012邱念伟等,2013寇江涛等,2013)。

我国是世界上杨树人工林面积最大的国家,杨树在环境保护、城乡绿化和用材林建设中发挥着重要作用(刘文国等,2010)。落叶松是我国人工林主要造林树种之一,也是北方地区选择和培育碳汇树种的重要植物种类。据不完全统计,落叶松人工林占黑龙江省总造林面积的70%以上,经济价值高,是重要的生态屏障(付尧等,2013)。森林植食性昆虫通过取食活动影响着森林的初级生产力、物种组成、能量流和养分循环,因此,通过模拟昆虫取食来探讨虫害对陆地碳循环和碳汇经济的影响,意义重大(王晓伟等,2013)。失叶是干扰森林生态系统平衡的一个重要因子,但食叶害虫的不同危害程度对杨树和落叶松生物量及碳储量影响的报道较少。准确、定量地测定林分失叶率,可为区域病虫害诊断提供重要依据,更好地服务于森林灾害评估、预测和病虫害控制等工作,尽可能降低森林灾害损失。本文研究了小黑杨(Populus simonii×P.nigra)及兴安落叶松(Larix gmelinii)在不同失叶率情况下,其生物量和叶绿素含量的变化,为准确评估食叶害虫不同危害程度对杨树和落叶松碳汇能力的影响提供依据。

1 材料与方法 1.1 试验材料及处理方法

于4月中旬在黑龙江省平山森林植物隔离试种苗圃选择2块样地,用直径25 cm花盆栽植小×黑杨树插条苗和2年生兴安落叶松幼苗,每盆栽植1株,定期浇水除草。7月中旬,分别选择健康、长势一致且叶片无病虫害的2种幼苗,各分为4组,每组随机选择60株,对其中3组进行1次性剪叶处理,剪叶量分别为全株的25%,50%,75%,以不剪叶植株作为对照,方法参考高瑞桐等(1985)袁红娥等(2009)。杨树的处理方法:失叶25%为自上而下每隔3叶剪1叶,50%为隔1叶剪1叶,75%每4叶留1叶,摘除叶仅留叶柄;落叶松的处理方法:分别剪去每枝条针叶的25%,50%,75%。对照样苗不作任何处理,用以测量失叶率对小黑杨和兴安落叶松幼苗生物量和叶绿素含量的影响。

1.2 主要仪器与试剂

UV-240紫外分光光度计(Biochtom Ltd.Cambridge CB4 OF J.Engl and ),鼓风干燥箱(上海-恒科仪器有限公司),XS365M电子天平(Precisa Instrument Ltd./Switzerl and ),丙酮分析纯(北京化工厂)。

1.3 试验方法 1.3.1 生物量指标测定

参照邹琦(2000)方法并略加改进,9月末苗木基本停止生长,此时采集样品,每组随机采集15株幼苗。把整株苗带回实验室,测量其根长、株高;以根茎交界处为分界线,将地上和地下部分分开,分别称量鲜质量,之后将材料剪碎放入80 ℃烘箱,烘干48 h至恒质量,称量干质量。

1.3.2 叶绿素测定

分别在剪叶处理后第5,10,15,20和25天取样。每次每个处理以3株幼苗为1个重复,采集样株全株剩余叶片,并将叶片(或针叶)充分混匀,每个处理重复3次,共9株苗。每株样苗只取样1次。将样品装于冰盒中带回实验室,置于低温冰箱(-40 ℃)保存。叶绿素测定参照邹琦(2000)方法并加以修改,称取鲜叶0.2 g,剪碎,置入10 mL 80%丙酮中,于低温黑暗条件下浸提,用UV-240紫外分光光度计在波长663和645 nm下测定吸光度,用80%丙酮作空白对照,每一重复测定3次,按以下公式计算叶绿素含量。

$ \begin{array}{l}叶绿素含量\left({mg \cdot {g^{ - 1}}} \right)= \\\frac{{质量浓度\left({mg \cdot {g^{ - 1}}} \right)\times 提取液总量\left({mL} \right)\times 稀释倍数}}{{样品鲜质量\left({mg} \right)\times 1000}},\\叶绿素总含量\left({mg \cdot {g^{ - 1}}} \right)= 叶绿素a含量 + 叶绿素b含量。\end{array} $
1.4 数据处理

所得数据为平均数±标准误(mean±SE)。采用SPSS 17.0软件进行方差分析,用单因素差异显著性分析法(one-way ANOVA)和最小显著差法(LSD)在0.05水平下检验不同失叶程度下植株生物量和叶片叶绿素含量与对照组之间差异的显著性。

2 结果与分析 2.1 不同失叶率对生物量的影响 2.1.1 不同失叶率对小黑杨生物量的影响

图 1A所示,失叶率为75%时,株高显著低于对照(P<0.05),失叶率为25%和50%时,株高与对照差异不显著(P>0.05)。如图 1BCD所示,与对照相比,失叶率25%,50%和75%对杨树的根长、茎鲜质量及茎干质量未造成显著影响(P>0.05),但对根鲜质量、干质量影响显著(P<0.05)(图 1EF);失叶率50%和75%时,全株鲜质量、干质量显著低于对照(P<0.05)(图 1GH)。这说明失叶率虽对根长影响不大,但会导致生物量发生显著变化,在失叶率超过50%时,全株生物量显著降低。

图 1 不同失叶率对杨树幼苗生物量的影响 Fig. 1 The effect of different leaf loss rates on biomass of poplar seedlings
2.1.2 不同失叶率对兴安落叶松生物量的影响

不同程度的失叶率对落叶松株高的影响不显著(P>0.05)(图 2A);在失叶50%时,根长显著大于对照(P<0.05)(图 2B);失叶25%,50%和75%情况下,茎、根、全株的鲜质量和干质量均显著低于对照(P<0.05)(图 2C~H)。植物根系在长期的进化与适应中产生了一系列塑性反应,以响应自然界中广泛存在的时空异质性(王鹏等,2012)。本研究结果显示,落叶松根系有较强的捕获塑性,捕获能量可维持其自身的生长,使其在失叶率为50%时根长显著增长,但是最终仍未能弥补由失叶造成的根部和整株生物量的损失。2.2不同失叶率对叶绿素含量的影响

图 2 不同失叶率对兴安落叶松幼苗生物量的影响 Fig. 2 The effect of different needle loss rates on biomass of larch seedlings
2.2.1 不同失叶率对小黑杨叶绿素含量的影响

表 1所示,杨树叶片中叶绿素a含量高于叶绿素b。失叶处理5天后,处理植株与对照相比叶绿素含量增多,且失叶75%植株叶绿素a和叶绿素a+b的含量显著高于对照及失叶25%和50%(P<0.05);处理后10天,失叶率25%,75%处理组叶绿素b、叶绿素a+b含量显著高于对照(P<0.05),各处理之间差异不显著;处理15天后,叶绿素含量各个处理组之间以及与对照之间差异均不显著(P>0.05);处理后20天,失叶50%的植株叶绿素a、叶绿素b、叶绿素a+b的含量显著低于对照和失叶25%(P<0.05),亦低于75%,但差异不显著;处理后25天,各处理叶绿素含量与对照间差异不显著(P>0.05),失叶50%显著高于失叶25%(P<0.05),亦高于失叶75%,但差异不显著。各处理天数条件下叶绿素含量和比对照比较的情况:失叶25%高-低,50%平-低-高,75%高-平。这说明植物为了维持本身的生长发育,在叶面积减少后会立刻作出反应,使叶片中的叶绿素含量增加,以满足光合作用的需要。

表 1 不同失叶率对杨树幼苗叶绿素含量的影响 Tab.1 Effects of different leaf area removal on the content of chlorophyll a,b and a+b in poplar leaf
2.2.2 不同失叶率对兴安落叶松叶绿素含量的影响

失叶后兴安落叶松叶绿素含量的变化见表 2。落叶松针叶中叶绿素b含量高于叶绿素a。处理后5天与20天叶绿素的变化趋势相似,表现为失叶25%,75%的植株叶绿素a、叶绿素b和叶绿素a+b含量显著高于对照,而失叶50%显著低于对照(P<0.05);处理后10天,失叶25%和75%的植株叶绿素a、叶绿素b和叶绿素a+b含量显著低于对照(P<0.05),失叶50%与对照和其他处理组间差异不显著;处理后15天,失叶25%的叶绿素含量与对照及其他处理组间差异均不显著(P>0.05),但失叶50%,75%的植株叶绿素b与叶绿素a+b含量显著低于对照(P<0.05);处理后25天,失叶50%叶绿素含量显著高于对照和其他处理(P<0.05)。随着处理天数的增加,各处理叶绿素含量与比对照比较的情况:失叶25%高-低,50%低-高,75%高-低-高。这说明兴安落叶松在失叶时会调整针叶内的叶绿素含量,以弥补光合面积的损失。吴继友等(1995)报道,在落叶松受松毛虫轻度危害时,因为从健康到轻度受害植物遵从过补偿规律,其松叶的叶绿素含量有轻微的上升,用增加叶绿素含量来超补偿虫害初期引起的轻微的损害;达到中度受害程度后,松树的叶绿素补偿能力降低,随着受害程度的加重叶绿素总含量减少;在80%以上的针叶被害时,针叶呈灰绿色或枯黄色,树木濒濒于死亡或已经死亡。这与本研究结果规律不一致,可能与本研究持续时间较短,没有达到一个生长季有关,也可能与失叶方式不同有关。

表 2 不同失叶率对兴安落叶松幼苗叶绿素含量的影响 Tab.2 Effects of different needle removal on the content of chlorophyll a,b and a+b in larch needle
3 结论与讨论

在农林业生产中,林木或作物的一部分器官遭受害虫取食后并不一定引起减产,甚至在一定条件下还能增产,这种现象被称为补偿作用,或超越补偿作用(陈建明等,2005)。盛承发等(1986)利用该原理,提出了棉铃虫(Helicoverpa amigera)二代期的防治措施,取得了显著的经济生态学效益。在林木害虫防治阈值的研究中发现,树木损失40% ~50%叶量时,其生长量不降低。王赛专等(2012)报道,泡桐(Paulownia sp.)被人工摘叶10%时,次年的材积增长量超过了对照。何学友等(2013)发现当油茶(Camelia oleifera)叶片损失量超过25%时,对产量的影响非常大,不仅造成当年极为严重的损失,甚至绝产,而且导致树势衰弱甚至枯死,对翌年的产量也产生很大影响。王志明等(2006)在林间人工模 拟叶蜂对落叶松的危害,发现在落叶松一次性失叶率为20% ~30%时,落叶松表现为超补偿现象。本研究结果表明,失叶对杨树根长及茎质量、干质量无显著影响,而根鲜、干质量和全株鲜、干质量显著低于对照;各处理的落叶松株高无显著变化,根、茎的鲜、干质量以及全株的鲜、干质量均显著低于对照。当失叶率杨树超过50%、兴安落叶松超过25%时,其全株生物量均显著降低:对地下部分生长的影响极明显,2种树木均表现为根质量下降;对地上部分生长的影响不同,杨树茎质量未显著降低,落叶松则相反。生物量是植物同化产物的积累,体现了植物固定碳的能力。杨树在失叶超过50%和落叶松失叶超过25%后,其不同部位之间生物量虽然存在补偿作用,但均不存在超补偿作用,最终导致其固碳能力均明显降低。

食叶害虫的危害会影响叶绿素的含量。寇江涛等(2013)研究蓟马(Odoutothrips loti)对紫花苜蓿(Medicago sativa)的危害,结果表明,叶片受害级别与叶绿素含量呈显著的负相关。本研究结果表明,杨树和兴安落叶松在失叶后都增加了叶绿素的含量,进而增强单位面积光合作用,来补偿失叶对光合能力的影响,弥补失叶对植株生长和生物量造成的影响。杨树失叶后5~10天,失叶75%的叶绿素含量高于对照,光合能力提高,使其生物量与失叶25%和50%的植株无显著差异,亦使光合产物与失叶程度之间未呈现相关性变化。功能平衡假说(Kempel et al.,2011)将植物分为根和冠2部分,根的生长受冠部光合作用碳供应速率的限制,而冠的生长受根系对养分和水分吸收速率的限制。植物通过对光合产物的分配来获取光照、养分、水分和CO2等资源以达到最大的生长速率(平晓燕等,2010)。本研究结果显示,杨树以牺牲根部的生长来保证地上部分的生长,使得在不同失叶率情况下,茎部生物量与对照差异不大,而根部生物量显著低于对照;但在失叶率超过50%时,超出杨树的补偿能力,使其总生物量显著低于对照。虽然落叶松叶绿素含量变化与杨树类似,但其补偿能力远不如杨树,使落叶松各部分生物量均显著低于对照。

本研究结果说明,林木受食叶害虫危害后能增加叶片中叶绿素的含量来弥补光合面积的损失,但对食叶害虫的忍耐力和补偿能力是非常有限的,且针阔叶树应对失叶的补偿能力存在差异。在小黑杨失叶超过50%、兴安落叶松失叶超过25%时,其固碳量受到显著抑制,必需采取有效措施控制害虫危害。许多研究已经证明人工模拟试验与野外取食危害结果存在一致性,人工模拟危害的试验方法可行(陈良昌等,2001王志明等,2006)。但是剪叶是瞬间过程,而昆虫取食是一个渐进的过程,模拟危害使植物在补偿速度上可能存在差异。本研究只是针对不同失叶率对树木生物量造成的影响进行的,没有研究害虫取食过程中植株的变化,有待继续探讨。

参考文献(References)
[1] 陈建明,俞晓平,程家安,等.2005.植物耐虫性研究进展.昆虫学报,48(2):262-272.
(Chen J M,Yu X P,Cheng J A,et al.2005.Plant tolerance against insect pests and its mechanisms.Acta Entomologica Sinica,48(2): 262-272[in Chinese]).(1)
[2] 陈良昌,李美娥,李伯瑾,等.2001.马尾松毛虫危害对松树生长量影响的研究.湖南林业科技,28(4):49-51.
(Chen L C,Li M E,Li B J,et al. 2001.The harmful effect of Punctata Walker to the Pinus massoniana increasement.Hunan Forestry Science & Technology,28(4): 49-51[in Chinese]).(1)
[3] 付尧,孙玉军.2013.植物有机碳测定研究进展.世界林业研究,26(1):24-30.
(Fu Y,Sun Y J.2013.A study of the determination of organic carbon of vegetation.World Forestry Research,26(1): 24-30[in Chinese]).(1)
[4] 高瑞桐,秦锡祥,李吉震,等.1985.食叶害虫的食叶量与树木生长关系.林业科学,21(2):199-205.
(Gao R T,Qin X X,Li J Z,et al.1985.A preliminary study on the relationship between artificial defoliation of poplar trees and the growth of them.Scientia Silvae Sinicae,21(2): 199-205[in Chinese]).(1)
[5] 郭娜,刘剑秋.2011.植物生物量研究概述.亚热带植物科学,40(2):83-88.
(Guo N,Liu J Q.2011.A review of research on plant biomass.Subtropical Plant Science,40(2): 83-88[in Chinese]).(1)
[6] 何学友,蔡守平,谢一青,等.2013.不同叶面积损失对油茶产量及品质的影响.林业科学,49(5):85-91.
(He X Y,Cai S P,Xie Y Q,et al.2013.Effects of partial leaf area reduction on yield and quality of Camellia oleifera.Scientia Silvae Sinicae,49(5): 85-91[in Chinese]).(1)
[7] 寇江涛,师尚礼,胡桂馨,等.2013.紫花苜蓿对蓟马危害的光合生理响应.中国农业科学,46(12):2459-2470.
(Kou J T,Shi S L,Hu G X,et al.2013.Photosynthetic physiology of odontothrips damaged Medicago sativa.Scientia Agricultra Sinica,46(12): 2459-2470[in Chinese]).(2)
[8] 李朝.2010.徐州侧柏人工林生物量研究.南京:南京林业大学硕士学位论文.
(Li C.2010.Study on biomass of Platyclatdus orientalis plantation in Xuzhou.Nanjing MS thesis of Nanjing Forestry University[in Chinese]).(1)
[9] 李春明,杜纪山,张会儒.2008.间伐对长白落叶松林分生物量的影响.西北林学院学报,6(6):69-73.
(Li C M,Du J S,Zhang H R.Influence of thinning on the biomass of Larix olgensis plantation.Journal of Northeast Forestry University,6(6): 69-73[in Chinese]).(1)
[10] 李辉,白丹,张卓,等.2012.羊草叶片SPAD值与叶绿素含量的相关分析.中国农学通报,28(2):27-30.
(Li H,Bai D,Zhang Z,et al.Correlation analysis between SPAD value and chlorophyll content of leaf of Leymus chinensis.Chinese Agricultural Science Bulletin,28(2): 27-30[in Chinese]).(1)
[11] 刘文国,张旭东,黄玲玲,等.2010.我国杨树生理生态研究进展.世界林业研究,23(1):50-55.
(Liu W G,Zhang X D,Huang L L,et al.Research progress on physiologic and ecologic characteristics of popular.World Forestry Research,23(1): 50-55[in Chinese]).(1)
[12] 平晓燕,周广胜,孙敬松.2010.植物光合产物分配及其影响因子研究进展.植物生态学报,34(1):100-111.
(Ping X Y,Zhou G S,Sun J S.2010.Advances in the study of photosynthate allocation and its controls.Chinese Journal of Plant Ecology,34(1): 100-111[in Chinese]).(1)
[13] 邱念伟,周峰,王颖,等.2013.松树与杨树叶片叶绿素快相荧光动力学特征比较.林业科学,49(3):136-143.
(Qiu N W,Zhou F,Wang Y,et al. 2013.Comparison on characteristics of the fast chlorophyll fluorescence induction kinetics between Pinus species and Populus species.Scientia Silvae Sinicae,49(3): 136-143[in Chinese]).(1)
[14] 盛承发,马世俊.1986.棉铃虫二代期模拟为害蕾的经济生态学效益.生态学报,2(8):148-158.
(Sheng C F,Ma S J.1986.Econ-ecological benefit of manual removal of squares during the 2nd generation cotton bollworm(Heliothis armigera).Acta Ecologica Sinica,2(8): 148-158[in Chinese]).(1)
[15] 宋玉双,苏宏钧,于海英,等.2011.2006—2010年我国林业有害生物灾害损失评估.中国森林病虫,30(6):1-4.
(Song Y S,Su H J,Yu H Y,et al.2011.Evaluation of economic losses caused by forest pest disasters between 2006 and 2010 in China.Forest Pest and Disease,30(6): 1-4[in Chinese]).(1)
[16] 孙宝刚.2012.云南松林碳储量及松墨天牛危害引起的云南松林碳损失研究.北京:中国林业科学研究院硕士学位论文.
(Sun B G.2012.Carbon storage of Pinus Yunnanensis and carbon loses of Pinus Yunnanensis caused by Monochamus alternatus.Beijing:MS thesis of Chinese Academy of Forestry[in Chinese]).(1)
[17] 王丽珍,段立清,特木钦,等.2006.寄主植物对舞毒蛾生长发育的影响.中国森林病虫,25(1):21-23.
(Wang L Z,Duan L Q,Te M Q,et al.2006.Influence of host plants on the development of gypsy moth.Forest Pest and Disease,25(1): 21-23[in Chinese]).
[18] 王鹏,牟溥,李云斌.2012.植物根系养分捕获塑性与根竞争.植物生态学报,36(11):1184-1196.
(Wang P,Mou P,Li Y B.2012.Review of root nutrient foraging plasticity and root competition of plants.Chinese Journal of Plant Ecology,36(11): 21-23[in Chinese]).(1)
[19] 王赛专,康文星,杨志敏.2012.杉木人工林各植物组分含碳率研究.湖南林业科技,39(3):58-60.
(Wang S Z,Kang W X,Yang Z M.2012.The carbon content of plant components of Chinese fir plantation.Hunan Forestry Science & Technology,39(3): 58-60[in Chinese]).(1)
[20] 王晓伟,姬兰柱,张庆贺,等.2013.美国的舞毒蛾管理及其启示(Ⅰ).中国森林病虫,32(2):22-25.
(Wang X W,Ji L Z,Zhang Q H,et al.2013.Gypsy moth management in the United States and its enlightenment(I).Forest Pest and Disease,32(2): 22-25.(in Chinese))(1)
[21] 王志明,刘国荣,程彬.2006.伊藤厚丝叶蜂生物学及其对落叶松生长的影响.东北林业大学学报,34(5):13-15.
(Wang Z M,Liu G R,Cheng B.2006.Biology of Pachynematus itoi Okutani and its influence on larch growth.Journal of Northeast Forestry University,34(5): 13-15[in Chinese]).(3)
[22] 吴继友,倪健.1995.松毛虫危害的光谱特征与虫害早期探测模式.环境遥感,10(4):250-258.
(Wu J Y,Ni J.1995.Spectral characteristics of the pine leaves damaged by pine moth and a model for detecting the damage early.Remote Sensing of Environment,10(4): 250-258[in Chinese]).(1)
[23] 徐新良,曹明奎,李克让.2007.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展,26(6):1-10.
(Xu X L,Cao M K,Li K R.2007.Temporal-spatial dynamics of carbon storage of forest vegetation in China.Progress in Geography,26(6): 1-10[in Chinese]).(1)
[24] 杨广兴,李胜,李唯,等.2007.几种外源含氮化合物对草麻黄愈伤组织增殖和麻黄碱含量的影响.植物生理学通讯,43(1):49-52.
(Yang G X,Li S,Li W,et al.2007.Effects of extro-nitrogenous compounds on callus multiplication and ephedrine production in Ephedra sinica Stapf cell culture.Plant Physiology Communications,43(1): 49-52[in Chinese]).(1)
[25] 袁红娥,严善春,佟丽丽,等.2009.剪叶损伤与昆虫取食对兴安落叶松(Larix gmefinii)针叶中缩合单宁诱导作用的差异.生态学报,29(3):1415-1420.
(Yuan H E,Yan S C,Tong L L,et al.2009.Content differences of condensed tannin in needles of Larix gmelinii by cutting needles and insect feeding.Acta Ecologica Sinica,29(3): 1415-1420[in Chinese]).(1)
[26] 邹琦.2000.植物生理学实验指导.北京:中国农业出版社.
(Zou Q.2000.Laboratory Guide for Plant Physiology.Beijing: China Agriculture Press.[in Chinese])(1)
[27] Kempel A,Schadler M,Chrobock T,et al. 2011.Tradeoffs associated with constitutive and induced plant resistance against herbivory.Proceedings of the National Academy of Sciences,108(14): 5685-5689.(2)
[28] McGarvey R C,Martin T A,White T L.2004.Integrating within-crown variation in net photosynthesis in loblolly and slash pine families.Tree Physiology,24(11): 1209-1220.(1)
[29] Royle D D,Lathrop R G.1997.Monitoring hemlock forest health in New Jersey using Landsat TM data and change detection techniques.Forest Sci,43(3): 327-335.(1)