林业科学  2015, Vol. 51 Issue (3): 8-15   PDF    
DOI: 10.11707/j.1001-7488.20150302
0

文章信息

董周焱, 柏新富, 侯玉平, 卜庆梅
Dong Zhouyan, Bai Xinfu, Hou Yuping, Bu Qingmei
胶东滨海8种树木叶片热值、建成成本及其适应能力
Leaf Calorific Value of 8 Tree Species in the Coastal Areas of Jiaodong and Cost of Construction of Leaf Biomass and Its Adaptability
林业科学, 2015, 51(3): 8-15
Scientia Silvae Sinicae, 2015, 51(3): 8-15.
DOI: 10.11707/j.1001-7488.20150302

文章历史

收稿日期:2013-12-22
修回日期:2015-01-19

作者相关文章

董周焱
柏新富
侯玉平
卜庆梅

胶东滨海8种树木叶片热值、建成成本及其适应能力
董周焱, 柏新富 , 侯玉平, 卜庆梅    
鲁东大学生命科学学院 烟台 264025
摘要【目的】评估海岸多变环境条件下不同树种的生长发育潜能和适应能力,为海岸防护林建设的树种选择提供参考。【方法】以烟台海岸防护林带的主要树种柽柳、黑松、龙柏、白蜡、廊坊杨、红花槐、刺槐和紫穗槐为研究对象,以热值测定、元素分析和生物量建成成本计算为基本方法,对各树种的能量利用策略和生长、适应能力进行比较分析。【结果】本试验的8个树种中,叶片碳含量以黑松最高、柽柳最低,灰分含量则以黑松最低、柽柳最高,其他树种居两者之间,叶片氮含量和比叶面积以黑松和龙柏最低,其他树种较高,总体表现为阔叶树种高于鳞针叶树种;去灰分热值大致分为3个层次:紫穗槐、刺槐、红花槐、黑松和龙柏较高,白蜡和廊坊杨较低,柽柳最低;叶片单位面积建成成本表现为红花槐<紫穗槐<刺槐<白蜡<廊坊杨<柽柳<黑松<龙柏;相关性分析显示,去灰分热值与叶片碳含量极显著正相关、与灰分含量极显著负相关(P<0.01),叶片单位质量建成成本和单位面积建成成本均与去灰分热值和叶片碳含量显著正相关(P<0.05)、与灰分含量显著负相关(P<0.05),单位面积建成成本还与叶片氮含量和比叶面积极显著负相关(P<0.01);单位生物量中含碳化合物比例越高的植物,其能量利用效率越低、构建生物体的成本就越高,而单位生物量中灰分含量越高的植物,其能量利用效率也越高、构建生物体的成本则越低;叶片氮含量高有利于叶片的扩展,降低构建单位面积叶片的能量成本。【结论】本试验中8个树种的生长竞争力表现为红花槐>紫穗槐>刺槐>白蜡>廊坊杨>柽柳>黑松>龙柏;对海岸环境适应能力则以柽柳最强,黑松和龙柏次之,白蜡和廊坊杨第3,红花槐、紫穗槐和刺槐最低;海岸防护林的树种配置应以柽柳作为前沿植物,龙柏和黑松在柽柳之后,廊坊杨和白蜡居第3层,刺槐、紫穗槐和红花槐则可以种植在防护林的后部。
关键词滨海地区    木本植物    热值    建成成本    适应能力    
Leaf Calorific Value of 8 Tree Species in the Coastal Areas of Jiaodong and Cost of Construction of Leaf Biomass and Its Adaptability
Dong Zhouyan, Bai Xinfu, Hou Yuping, Bu Qingmei    
College of Life Science, Ludong University Yantai 264025
Abstract: [Objective] Growth potential and adaptability of 8 tree species to the harsh coastal environment were assessed in order to provide a reference for species selection for the construction of coastal shelterbelt forest. [Method] Based on calorimetric measurement, factorial analysis and biomass buildup costs calculation, a comparative analysis was carried out on the strategy of energy use, growth potential and adaptability of each of the 8 species: Tamarix chinensis, Pinus thunbergii, Juniperus chinensis var. kaizuka, Fraxinus chinensis, Populus langfanggensis, Robinia hispida, Robinia pseudoacacia and Amorpha fruticosa, all grown in the coastal areas of Yantai. [Result] The results showed that carbon content of Pinus thunbergii was the highest among the 8 species, while Tamarix chinensis was the lowest one. In contrast, Tamarix chinensis displayed the highest ash content and Pinus thunbergii the lowest. Pinus thunbergii and Juniperus chinensis showed the lowest nitrogen content and specific leaf area (SLA). Overall, the broad-leaved species were higher than the conifer species (Juniperus chinensis, Pinus thunbergii and Juniperus chinensis) in term of nitrogen content and SLA. The 8 species were divided into 3 groups in terms of ash free calorific values, and the order from the highest to the lowest was: Amorpha fruticosa, Robinia pseudoacacia, Robinia hispida, Pinus thunbergii and Juniperus chinensis as group 1, followed by Fraxinus chinensis and Populus langfanggensis as group 2 and T. chinensis as group 3. The area-based leaf construction costs (CCarea) of the 8 species from high to low is: R. hispida, A. fruticosa, R. pseudoacacia, Fraxinus chinensis, Populus langfanggensis, Tamarix chinensis, Pinus thunbergii and Juniperus chinensis. Correlation analysis showed that the ash free caloric values were very significantly positively correlated with carbon content (P<0.01), but very significantly negatively with ash content (P<0.01). The mass-based and area-based leaf construction costs both displayed a significant positive correlation with ash free calorific value and carbon content of the leaves (P<0.05), and a significantly negatively correlation with ash content (P<0.05). Furthermore, the area-based leaf construction cost showed a very significant negative correlation with nitrogen content and SLA (P <0.01). The results implies that the higher the proportion of carbon-containing compound in per unit of biomass, the lower the energy utilization efficiency and the higher the construction cost of building up the organism; while the higher ash content of the per unit biomass, the higher its energy efficiency and the lower the construction cost of building up. Meanwhile, the high nitrogen content in leaf is useful for the extension of leaf blade, and reduction of energy cost of construction of per unit area of the leaf. [Conclusion] The comprehensive analysis of the calorific values, construction costs, specific leaf area, leaf ash/carbon and nitrogen content showed that the order for the growth competitiveness of the 8 species from high to low was: Robinia hispida, Amorpha fruticosa, Robinia pseudoacacia, Fraxinus chinensis, Populus langfanggensis, Tamarix chinensis, Pinus thunbergii, and Juniperus chinensis. The order of adaptability was: Tamarix chinensis, Pinus thunbergii, Juniperus chinensis, Fraxinus chinensis, Populus langfanggensis, Robinia hispida, Amorpha fruticosa and Robinia pseudoacacia. Tamarix chinensis should be taken as the front line plant, followed by Juniperus chinensis and Pinus thunbergii as the second line and Populus langfanggensis and Fraxinus chinensis as the third line in building up the coastal shelterbelt forest in Yantai region. Robinia pseudoacacia, Amorpha fruticosa and Robinia hispida should be planted behind the shelterbelt forest.
Key words: coastal areas    woody plants    calorific value    construction cost    adaptability    

热值是指单位质量干物质在完全燃烧后所释放出来的热量值,反映植物在光合作用中转化日光能的能力,与干物质产量结合是评估森林生态系统初级生产力的重要指标(Golley,1961;Lin et al., 2008;高凯等,2012)。热值不仅能够反映植物各种生理活动的变化和生长状况的差异(孙国夫等,1993),也能体现各种环境因子对植物生长的影响(李宏等,2013;刘灿等,2010)。生物量建成成本是衡量植物组织建成所需能量成本的指标,它反映了植物的能量投资成本和能量利用策略(Villar et al., 2001;宋莉英等,2009),拥有较低的生物量建成成本的植物往往具有更高的生长速率和更强的扩张性(Daehler,2003;Pysek et al., 2007;Van Kleunen et al., 2010);植物的生物量建成成本增加则与抗性能力增强相关联(Fortunel et al.,2012;Matías et al., 2012)。

沿海防护林是国家防护林体系的重要组成部分,是沿海地区的绿色屏障(张志东等,2009),具有防风固沙、阻挡海雾、保护农田等作用(许景伟等,2003),对于维持沿海地区生态平衡有着重要意义。我国现有沿海防护林普遍存在树种单一、结构模式简单、生态系统脆弱、生态效能低等诸多问题。其中树种单调是导致沿海防护林病虫害易大发生、防护效能差、林地退化和生态防护功能低的主要因素(许景伟等,2003)。因此,保持防护林树种的多样性已成为现代海岸防护林体系建设的关键。本试验以烟台北部海岸主要木本植物柽柳(Tamarix chinensis)、黑松(Pinus thunbergii)、龙柏(Juniperus chinensis var. kaizuka)、白蜡(Fraxinus chinensis)、廊坊杨(Populus langfanggensis)、红花槐(Robinia hispida)、刺槐(Robinia pseudoacacia)和紫穗槐(Amorpha fruticosa)为研究对象,通过对其热值与生物量建成成本的测定、计算,从能量利用角度分析海岸带多变的恶劣环境下各树种的生长发育潜能和适应能力,为海岸防护林体系建设的树种选择提供参考。

1 研究区概况

研究区位于烟台市北部沿海的芝罘林场。烟台沿海属温带季风气候,春季风大干燥;夏季雨热同期、气温不高;秋季天高云淡、凉爽宜人;冬季光强雪多、温润不寒;年均降水量651.9 mm,年均气温11.8 ℃,年均空气相对湿度68%,年均太阳辐射总量5 224.4 MJ ·m-2,年均风速4~6 m ·s-1,全年无霜期210天。研究区土壤为滨海沙土,基质由疏松的中、粗沙组成,土壤有机质含量为1.01%,速效氮、磷、钾含量分别为56.8,0.8和52.5 mg ·kg-1,pH5.8。林分结构主要为人工栽植的6~7年生的柽柳、黑松、龙柏、白蜡、廊坊杨、红花槐、刺槐和紫穗槐等构成的混合林,林下有美洲商陆(Phytolacca americana)、白茅(Imperata cylindrica var.major)和肾叶打碗花(Calystegia soldanella)等分布。

2 研究方法 2.1 试验材料

选取林场试验林区内8个树种柽柳、黑松、龙柏、白蜡、廊坊杨、红花槐、刺槐和紫穗槐的6~7年生植株为测试对象。试验林区内各树种南北成行东西向混合排列(每行1个树种),株、行距1.5~2.5 m(树种不同,株、行距略有区别)。每个树种选择5行(每行作为1个取样单位),每行选择3株(3株的材料混合为1份样品)健康植株为取样对象,取植株向阳面中部当年生枝条近顶端的成熟叶或同化枝为材料,每株每次取样100 g,即每个树种每次取5份样品,每份样品300 g。于2013年春季(5月下旬)、夏季(7月下旬)和秋季(9月下旬)进行3次取样和测定(春季取样时黑松当年生针叶还未发育成熟,取上1年的针叶),取样后立即放入装有冰袋的保温箱内,带回实验室备用。由于木本植物不同器官之间热值有显著差异,功能叶片含有较高的蛋白质和脂肪(Golley,1969),并能合成一些高能物质(Ovington et al., 1960),在反映植物的能量代谢水平上较根、茎更具代表性(唐炎林等,2010)。因此,本试验取成熟的叶片为材料。

2.2 比叶面积测定

取每份样品的20个叶片,用内径已知的打孔器取叶圆片(每份样品取40个)在70 ℃下烘干称干质量,测定比叶面积。鳞针叶植物(柽柳、黑松、龙柏)叶面积测定参照肖强等(2005)的方法拍照并用Photoshop软件分析计算。比叶面积SLA为叶面积比叶片干质量。

2.3 灰分与热值测定

灰分含量用马福炉干灰化法测定。将70 ℃烘干72 h的样品(成熟叶片或同化枝)磨粉后精确称取1 g,用马福炉在700 ℃下灰化7 h,灰分质量/样品质量为灰分含量AC。

热值测定采用氧弹法。称取烘干粉碎后的样品0.5 g压片、烘干,精确称质量后用C2000氧弹热量计(IKA公司,德国)测定其热值,即为干质量热值GCV。去灰分热值AFCV=GCV/(1-AC)。测定环境温度为23~26 ℃。每次测定前用苯甲酸标定。

2.4 叶片碳、氮含量的测定

叶片全碳、全氮含量用Vario Micro cube小进样量元素分析仪(Elementar公司,德国)测定。以Cmass表示单位质量的叶碳含量、Nmass表示单位质量的叶氮含量。

2.5 叶片建成成本计算

叶片单位质量建成成本(CCmass,g glucose ·g-1)的计算按照Williams等(19871987)的方法:

$ C{C_{{\mathop{\rm mass}\nolimits} }} = \left[ {\left({0.06968\;\;AFCV - 0.065} \right)\left({1 - AC} \right)+ 7.5\left({k{N_{mass}}/14.0067} \right)} \right]/EC\ $

式中:EG为生长效率,不同物种的生长效率为0.87(Daehler,2003);N若为NO3-k=5;N若为NH4+k=-3,本试验参照Shen等(2011)的方法,用2种氧化形式计算出的CCmass值的平均数作为结果。

叶片单位面积建成成本CCarea(g glucose ·m-2)的计算方法为:

$ C{C_{area}} = C{C_{mass}}/SLA $
2.6 数据分析方法

本试验中所有测定指标均重复5次,结果以“平均值±标准差”计,利用SPSS17.0和Origin7.5软件进行统计和作图分析。

3 结果与分析 3.1 碳、氮含量、灰分含量和比叶面积

8个树种不同季节叶片碳、氮、灰分含量及比叶面积的测定结果见表 1。双因素方差分析和树种间的多重比较显示(表 2),黑松叶片碳含量比柽柳高15.13%,但柽柳灰分含量是黑松的4倍以上,其他树种的叶片碳含量和灰分含量均差异不大,皆居于黑松和柽柳之间且与两者均差异极显著(P<0.01)。叶片氮含量和比叶面积则表现为黑松和龙柏极显著低于其他树种(P<0.01),3个豆科树种(刺槐、紫穗槐、红花槐)则极显著高于其他树种(P<0.01),而鳞针叶树种的比叶面积只有阔叶树种的7.0%~38.9%。不同季节间的进一步比较(表 3)表明,叶片碳、氮含量在春季最高,灰分含量在秋季最高,比叶面积则在夏季最大,且灰分含量和比叶面积在不同季节间均差异极显著(P<0.01)。

表 1 8个树种叶片的碳含量、氮含量、灰分含量、比叶面积、热值和建成成本 Tab.1 Carbon content,nitrogen content,ash content,specific leaf area,ash free caloric values, mass-based and area-based leaf construction cost of 8 tree species
表 2 不同树种叶片单位质量和单位面积建成成本、去灰分热值、碳、氮和灰分含量及比叶面积的差异性分析 Tab.2 Test of differences in mass-based and area-based leaf construction cost,ash free caloric values,carbon content, nitrogen content,ash content and specific leaf area among different species
 
表 3 不同季节单位质量建成成本单位面积建成成本、去灰分热值、氮含量、碳含量、灰分含量和比叶面积的差异性分析 Tab.3 Test of differences in mass-based and area-based leaf construction cost,ash free caloric values, carbon content,nitrogen content,ash content and specific leaf area among different seasons
3.2 热值与叶片建成成本

8个树种在不同季节的去灰分热值、单位质量叶片建成成本和单位面积叶片建成成本见表 1。双因素方差分析发现,这3个指标在树种、季节2个因素间均差异极显著(P<0.01)。去灰分热值和单位质量建成成本均表现为黑松、龙柏、红花槐、紫穗槐和刺槐较高,白蜡和廊坊杨次之,柽柳最低,且3个层次之间差异极显著(P <0.01)。而单位面积叶片建成成本则表现为3个鳞针叶树种(龙柏、黑松和柽柳)远高于其他阔叶树种,差异极显著(P <0.01),最大差异达到14.5倍;鳞针叶树种中龙柏和黑松又极显著高于柽柳(P <0.01),阔叶树种中廊坊杨极显著高于其他树种(P <0.01)(表 2)。不同季节间的差异性则表现为:去灰分热值差异不显著(P >0.05),单位质量差异极显著(P <0.01)和单位面积建成成本则差异显著(P <0.05)。说明植物自身的生态学特性在热值中起主导作用(唐炎林等,2010),生物量建成成本则会受到植物生长周期和外界环境物候变化的影响(表 3)。

3.3 影响热值和叶片建成成本的因素分析

对8个树种不同季节叶片碳含量、氮含量、灰分含量、比叶面积、去灰分热值、单位质量建成成本和单位面积叶片建成成本的相关性分析(表 4)表明:去灰分热值与叶片碳含量极显著正相关,而与灰分含量极显著负相关(P <0.01)、与比叶面积显著正相关(P <0.05)。单位质量建成成本与去灰分热值和叶片碳含量极显著正相关(P <0.01)、与叶片灰分含量极显著负相关(P <0.01)。单位面积叶片建成成本与去灰分热值和叶片碳含量显著(P <0.05)或极显著正相关(P <0.01),与叶片氮含量、灰分含量和比叶面积显著(P <0.05)或极显著负相关(P <0.01)。

表 4 8个树种叶片去灰分热值、碳含量、氮含量、灰分含量、比叶面积和叶片建成成本的相关性 Tab.4 Correlation coefficients for linear relationships between the leaf construction cost and associated leaf traits: ash free caloric values,carbon content,nitrogen content,ash content,and specific leaf area of eight species

此外,叶片碳含量与灰分含量极显著负相关(P <0.01),叶片氮含量则与灰分含量和比叶面积极显著正相关(P <0.01)。

4 讨论与结论

植物热值反映绿色植物在光合作用中转化日光能的能力,体现了植物的能量代谢水平,各种环境因子对植物生长的影响也可以从热值的变化上反映出来(郑朝晖等,2011)。林光辉等(1991)发现冬季秋茄(K and elia c and el)鲜叶热值随着纬度升高而升高,并认为这种升高是由于低温刺激使其积累有机物以增强抗寒力的结果。可见,在不利环境条件下植物为了适应环境往往需要提高含能产品的水平,从而使热值升高。但从进化角度分析,植物在单位干质量中所含的热值越低,则越利于其适应严酷的环境(郭水良等,2005)。在本试验的8个树种中,去灰分热值较高的为紫穗槐、刺槐、红花槐、黑松和龙柏,白蜡和廊坊杨较低,柽柳最低。因此,从热值的角度分析,红花槐、紫穗槐和刺槐对海岸恶劣环境适应能力相对较低,为了适应环境,它们需要消耗更多的能量来合成一些保护性的化合物。柽柳、白蜡和廊坊杨则对海岸气候有较强的适应性,而黑松和龙柏由于树脂类物质、木质素等含量较高使其具有较高的热值(王立海等,2009)。

生物量建成成本反映了植物对能量的利用策略,对植物的竞争力有重要影响(Nagel et al.,2004)。有研究结果显示,低建成成本与高生长速率有关(Daehler,2003;Pysek et al.,2007;Van Kleunen et al., 2010)。高比叶面积和低叶片建成成本是植物迅速扩张的重要特性(Feng et al.,2008;Funk et al., 2007;Nagel et al., 2004;Song et al., 2007;宋莉英等,2009),且单位面积叶片建成成本在表征植物竞争力时更为重要(Baruch et al., 1999)。本试验的8个树种比叶面积由高到低依次为红花槐、紫穗槐、刺槐、白蜡、廊坊杨、柽柳、黑松和龙柏,单位面积叶片建成成本由低到高依次为红花槐、紫穗槐、刺槐、白蜡、廊坊杨、柽柳、黑松和龙柏。可见,高比叶面积与低单位面积建成成本具有一致性,据此排列8个树种的生长竞争力由高到低为红花槐、紫穗槐、刺槐、白蜡、廊坊杨、柽柳、黑松和龙柏。

宋莉英等(2009)Osunkoya等(2010)的研究结果显示,生物量建成成本与叶片碳含量显著正相关、与叶片灰分含量显著负相关(P<0.05),本试验结果与此一致。叶片碳浓度较高,代表以碳为基础的化合物的增加,主要是木质素、单宁等结构碳水化合物的增加,构建这类物质需要的能量较高(De Vries et al., 1974),叶片建成成本相应增高。植物的灰分物质积累不需要直接的能量(Villar et al., 2001),因此灰分高的植物叶片建成成本较低。同时,旱、盐等胁迫下无机离子的积累有助于植物的渗透调节(韩蕊莲等,2003;刘爱荣等,2005),因此,在海岸恶劣环境条件下,灰分含量较高在一定程度上有利于提高植物的抗逆性。比叶面积(叶片厚度)与光合速率(Garnier et al., 1999)和生长速率(Nielsen et al., 1996)负相关,较厚的叶片往往与叶片寿命延长和建成成本增加相关联(Mediavilla et al., 2001;Osunkoya et al., 2010),也与较强的抗逆性相关联(Fortunel et al., 2012;Matías et al.,2012)。本试验中阔叶树种比叶面积极显著高于鳞针叶树种、单位面积建成成本极显著低于鳞针叶树种(P<0.01),阔叶树中红花槐、紫穗槐和刺槐比叶面积极显著高于白蜡和廊坊杨、单位面积建成成本则显著低于白蜡和廊坊杨(P<0.05)。柽柳、龙柏和黑松等鳞针叶树种的竞争力和扩张性相对较弱,但其叶片寿命长,抵抗不良环境的能力强;红花槐、紫穗槐和刺槐具有更高的生长势,但叶片寿命短、抗逆性较弱;白蜡和廊坊杨则居2者之间,即具有较强的生长势,且有一定的抵抗不良环境的能力。

综上所述,在本试验的8个树种中,柽柳、龙柏和黑松等鳞针叶树种单位质量叶面积小、叶片单位面积建成成本高,所以它们生长潜力和竞争力较弱,但叶片寿命长、抗逆性强。其中又以柽柳灰分含量最高,单位质量建成成本最低,即柽柳具有更好的海岸环境适应性。5个阔叶树中,红花槐、紫穗槐和刺槐的比叶面积极显著高于白蜡和廊坊杨(P<0.01)、叶片单位面积建成成本则显著低于后者(P<0.05)。红花槐、紫穗槐和刺槐具有更高的生长势,但抗逆性相对较弱,尤以红花槐最明显。而白蜡和廊坊杨的各项指标多居于鳞针叶树种和3个豆科树种之间,其生长势和抗逆性也居于2者之间,其中廊坊杨的叶片单位面积建成成本和灰分含量显著高于白蜡、比叶面积又显著小于白蜡,说明其环境适应能力优于白蜡。因此,海岸防护林的树种配置应以柽柳作为前沿植物,龙柏和黑松在柽柳之后,廊坊杨和白蜡居第3层,刺槐、紫穗槐和红花槐则可以种植在防护林的后部。

参考文献(References)
[1] 高凯,谢中兵,徐苏铁,等.2012.内蒙古锡林河流域羊草草原15种植物热值特征.生态学报,32(2): 588-594.
(Gao K,Xie Z B,Xu S T,et al. 2012.Characterization of caloric value in fifteen plant species in Leymus chinensis steppe in Xilin River Basin,Inner Mongolia.Acta Ecologica Sinica,32(2): 588-594[in Chinese]).(1)
[2] 郭水良,黄华,晁柯,等.2005.金华市郊10种杂草的热值和灰分含量及其适应意义.植物研究,25(4): 460-464.
(Guo S L,Huang H,Chao K,et al. 2005.On caloric values and ash contents of ten weed species in Jinhua suburb and its adaptive significances.Bulletin of Botanical Research,25(4): 460-464[in Chinese]).(1)
[3] 韩蕊莲,李丽霞,梁宗锁.2003.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究.西北植物学报,23(1): 23-27.
(Han R L,Li L X,Liang Z S.2003.Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress.Acta Botanica Boreali-Occidentalia Sinica,23(1): 23-27[in Chinese]).(1)
[4] 李宏,程平,郑朝晖,等.2013.克拉玛依地区主要树种干部热值与碳含量特征分析.林业科学,49(9): 29-37.
(Li H,Cheng P,Zheng Z H,et al. 2013.Characteristic analysis on caloric values and carbon contents of dominant trees in Karamay region.Scientia Silvae Sinicae,49(9): 29-37[in Chinese]).(1)
[5] 林光辉,林鹏.1991.红树植物秋茄热值及其变化的研究.生态学报,11(1): 44-48.
(Lin G H,Lin P.1991.The change of caloric values of a mangrove species,Kandelia candel in China.Acta Ecologica Sinica,11(1): 44-48[in Chinese]).(1)
[6] 刘爱荣,赵可夫.2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,31(4): 389-395.
(Liu A R,Zhao K F.2005.Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress.Journal of Plant Physiology and Molecular Biology,31(4): 389-395[in Chinese]).(1)
[7] 刘灿,李宏.2010.四种杨属植物的热值及灰分含量的比较.中南林业科技大学学报:自然科学版,30(10): 24-28.
(Liu C,Li H.Comparison of caloric values and ash contents in the four Populus L.species.Journal of Central South University of Forestry & Technology:Natural Science,30(10): 24-28[in Chinese]).(1)
[8] 宋莉英,彭长连,彭少麟.2009.华南地区3种入侵植物与本地植物叶片建成成本的比较.生物多样性,17(4): 378-384.
(Song L Y,Peng C L,Peng S L.2009.Comparison of leaf construction costs between three invasive species and three native species in South China.Biodiversity Science,17(4): 378-384[in Chinese]).(3)
[9] 孙国夫,郑志明,王兆骞.1993.水稻热值的动态变化研究.生态学杂志,12(1): 1-4.
(Sun G F,Zheng Z M,Wang Z Q.1993.Dynamics of calorific values of rice.Chinese Journal of Ecology,12(1): 1-4[in Chinese]).(1)
[10] 唐炎林,曹敏,唐建维,等.2010.西双版纳热带季节雨林优势植物热值.生态学杂志,29(3): 427-433.
(Tang Y L,Cao M,Tang J W,et al. 2010.Caloric values of dominant plant species in Xishuangbanna tropical seasonal rainforest.Chinese Journal of Ecology,29(3): 427-433[in Chinese]).(2)
[11] 王立海,孙墨珑.2009.小兴安岭主要树种热值与碳含量.生态学报,29(2): 953-959.
(Wang L H,Sun M L.2009.Caloric values and carbon contents of dom inant trees in Xiaoxing'anling forest region.Acta Ecologica Sinica,29(2): 953-959[in Chinese]).(1)
[12] 肖强,叶文景,朱珠,等.2005.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,24(6): 711-714.
(Xiao Q,Ye W J,Zhu Z,et al. 2005.A simple non-destructive method to measure leaf area using digital camera and Photoshop software.Chinese Journal of Ecology,24(6): 711-714[in Chinese]).(1)
[13] 许景伟,王卫东,王月海,等.2003.沿海黑松防护林低产、低质、低效成因的调查报告.东北林业大学学报,31(5): 96-98.
(Xu J W,Wang W D,Wang Y H,et al. 2003.Investigation report on the reasons of low-yield,poor-quality,inferior-function of coastal protective forest of Pinus thunbergii Parl.Journal of Northeast Forestry University,31(5): 96-98[in Chinese]).(1)
[14] 张志东,毛培利,刘玉虹,等.2009.林分结构对烟台黑松海岸防护林天然更新的影响.生态学报,30(8): 2205-2211.
(Zhang Z D,Mao P L,Liu Y H,et al. 2009.Effects of forest structure on natural regeneration of Pinus thunbergii coastal shelter forest in Yantai region.Acta Ecologica Sinica,30(8): 2205-2211[in Chinese]).(1)
[15] 郑朝晖,马春霞,马江林,等.2011.俄罗斯杨热值与含碳率特征分析.河南农业科学,40(6): 128-131.
(Zheng Z H,Ma C X,Ma J L,et al. 2011.Characteristics analysis of caloric value and carbon contents in Populus russkii. Journal of Henan Agricultural Sciences,40(6): 128-131[in Chinese]).(1)
[16] Baruch Z,Goldstein G.1999.Leaf construction cost,nutrient concentration,and net CO2 assimilation of native and invasive species in Hawaii.Oecologia,121(2): 183-192.(1)
[17] Daehler C C.2003.Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration.Annual Review of Ecology,Evolution and Systematics,34: 183-211.(3)
[18] De Vries F,Brunsting A,Van Laar H.1974.Products,requirements and efficiency of biosynthesis a quantitative approach.Journal of Theoretical Biology,45(2): 339-377.(1)
[19] Feng Y L,Fu G L,Zheng Y L.2008.Specific leaf area relates to the differences in leaf construction cost,photosynthesis,nitrogen allocation,and use efficiencies between invasive and noninvasive alien congeners.Planta,228(3): 383-390.(1)
[20] Fortunel C,Fine P V,Baraloto C.2012.Leaf,stem and root tissue strategies across 758 Neotropical tree species.Functional ecology,26(5): 1153-1161.(2)
[21] Funk J L,Vitousek P M.2007.Resource-use efficiency and plant invasion in low-resource systems.Nature,446(7139): 1079-1081.(1)
[22] Garnier E,Salager J L,Laurent G,et al. 1999.Relationships between photosynthesis,nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression.New Phytologist,143(1): 119-129.(1)
[23] Golley F B.1961.Energy values of ecological materials.Ecology,42(3): 581-584.(1)
[24] Golley F B.1969.Caloric value of wet tropical forest vegetation.Ecology,50(3): 517-519.(1)
[25] Lin H,Cao M.2008.Plant energy storage strategy and caloric value.Ecological Modelling,217(1/2): 132-138.(1)
[26] Matías L,Quero J L,Zamora R,et al. 2012.Evidence for plant traits driving specific drought resistance.A community field experiment.Environmental and Experimental Botany,81: 55-61.(2)
[27] Mediavilla S,Escudero A,Heilmeier H.2001.Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons.Tree physiology,21(4): 251-259.(1)
[28] Nagel J M,Griffin K L.2004.Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria? Biological Invasions,6(1): 101-111.(2)
[29] Nielsen S L,Enriquez S,Duarte C,et al. 1996.Scaling maximum growth rates across photosynthetic organisms.Functional ecology,10(2): 167-175.(1)
[30] Osunkoya O O,Bayliss D,Panetta F D,et al. 2010.Leaf trait co-ordination in relation to construction cost,carbon gain and resource-use efficiency in exotic invasive and native woody vine species.Annals of botany,106(2): 371-380.(2)
[31] Ovington J D,Heitkamp D.1960.The accumulation of energy in forest plantations in Britain.Journal of Ecology,48(3): 639-46.(1)
[32] Pysek P,Richardson D M.2007.Traits associated with invasiveness in alien plants: where do we stand? Biological Invasions,193(3): 97-125.(2)
[33] Shen X Y,Peng S L,Chen B M,et al. 2011.Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biological Invasions,13(4): 869-881.(1)
[34] Song L Y,Ni G Y,Chen B M,et al. 2007.Energetic cost of leaf construction in the invasive weed Mikania micrantha H.B.K.and its co-occurring species: implications for invasiveness.Botanical Studies,48(3): 331-338.(1)
[35] Van Kleunen M,Weber E,Fischer M.2010.A meta-analysis of trait differences between invasive and non-invasive plant species.Ecology Letters,13(2): 235-245.(2)
[36] Villar R,Merino J.2001.Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems.New Phytologist,151(1): 213-226.(2)
[37] Williams K,Percival F,Merino J,et al. 1987.Estimation of tissue construction cost from heat of combustion and organic nitrogen content.Plant,Cell & Environment,10(9): 725-734.(1)