林业科学  2015, Vol. 51 Issue (3): 75-83   PDF    
DOI: 10.11707/j.1001-7488.20150310
0

文章信息

王金花, 王杰, 陈文烜, 宋丽丽
Wang Jinhua, Wang Jie, Chen Wenxuan,
N2预处理结合MAP复合保鲜处理对水蜜桃贮藏品质、活性氧代谢及能量状态的影响
Effect of Short-term Nitrogen (N2) Pre-treatment in Combination with the Modified Atmosphere Package (MAP) on the Nutritional Quality, Reactive Oxygen Metabolism and Energy Status of Harvested Honey Peach Fruits
林业科学, 2015, 51(3): 75-83
Scientia Silvae Sinicae, 2015, 51(3): 75-83.
DOI: 10.11707/j.1001-7488.20150310

文章历史

收稿日期:2014-08-19
修回日期:2014-10-15

作者相关文章

王金花
王杰
陈文烜
宋丽丽

N2预处理结合MAP复合保鲜处理对水蜜桃贮藏品质、活性氧代谢及能量状态的影响
王金花1, 3, 王杰1, 3, 陈文烜3, 宋丽丽1, 2     
1. 南京农业大学食品科技学院 南京 210095;
2. 浙江农林大学亚热带森林培育国家重点实验室培育基地 临安 311300;
3. 浙江省农业科学院食品科学研究所 浙江省果蔬保鲜与加工技术研究重点实验室 杭州 310021
摘要【目的】水蜜桃采收后易后熟和衰老,贮藏期和货架期短。本研究为寻求安全有效的水蜜桃贮藏保鲜方式,并探究其保鲜机理。【方法】以“湖景蜜露”水蜜桃为试材,研究氮气预处理结合自发气调(MAP)复合保鲜处理对果实低温贮藏及货架期间营养品质、活性氧代谢及能量水平的影响。果实经100% N2处理6 h后,用厚度0.02 mm的聚乙烯薄膜袋密封包装,对照组不做任何处理。所有果实均置于(1±1)℃相对湿度85%~90%保鲜库中,贮藏30天后,从薄膜袋取出,置于(25±1)℃下模拟货架期。测定低温贮藏及货架期间水蜜桃果实腐烂指数、硬度、可溶性固形物(TSS)、维生素C(Vc)和过氧化氢(H2O2)含量、超氧阴离子(O2.-)产生速率、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和脂氧合酶(LOX)活性、膜透性、丙二醛(MDA)含量、腺苷三磷酸(ATP)、腺苷二磷酸(ADP)和腺苷磷酸(AMP)含量及能荷(EC)值。【结果】结果表明:随着冷藏及常温货架存放时间的延长,对照组水蜜桃果实组织中的ATP,ADP含量和能荷低温贮藏10天后即开始出现明显降低,SOD和CAT在整个贮藏过程中均呈现明显的下降趋势,H2O2 和O2.-的含量明显增加,而MDA含量与膜透性则呈大幅度的上升,导致膜脂过氧化程度的增加和膜完整性的破坏。N2预处理结合MAP复合保鲜处理可有效降低水蜜桃果实低温贮藏过程中的腐烂指数,当果实转到25 ℃放置4天,处理组水蜜桃的果实腐烂指数仅为对照组果实的55.56%。同时,N2预处理结合MAP复合保鲜处理能有效地维持果实TSS及Vc含量,较好保持了营养品质。进一步研究发现,N2预处理结合MAP复合保鲜处理能维持果实中较高的ATP,ADP含量及能荷值,提高SOD及CAT活性,进而抑制H2O2积累及O2.-的产生,降低MDA含量及膜透性的升高。相关性分析表明,在贮藏过程中,能荷值与O2.-产生速度(R2=0.971 2)、H2O2含量(R2=0.974 6)及膜透性(R2=0.967 8)具有显著负相关性。【结论】 N2预处理结合MAP复合保鲜处理延缓水蜜桃后熟衰老可能与提高果实组织能量水平及抗氧化水平,维持活性氧代谢的平衡,保持膜的完整性有关。
关键词水蜜桃    充氮处理    自发气调包装    营养品质    活性氧代谢    能量    
Effect of Short-term Nitrogen (N2) Pre-treatment in Combination with the Modified Atmosphere Package (MAP) on the Nutritional Quality, Reactive Oxygen Metabolism and Energy Status of Harvested Honey Peach Fruits
Wang Jinhua1, 3, Wang Jie1, 3, Chen Wenxuan3, 1, 2     
1. College of Food Science and Technology, Nanjing Agricultural University Nanjing 210095;
2. Cultivation Base for State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an Zhejiang 311300;
3. Institute of Food Science, Zhejiang Academy of Agricultural Science, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021
Abstract: [Objective] Honey peach (Prunus persica) fruits are highly perishable and rapidly lose quality after harvest. To explore an effective and safe storage technique and the preservation mechanism of the fruits, the effect of short-term N2 treatment in combination with the modified atmosphere package (MAP) on overall quality, reactive oxygen species (ROS) metabolism and energy level in honey peach fruits (cv. Hujingmilu) during storage were investigated. [Method] Honey peach fruits were pretreated with pure N2 for 6 h in glass jars, and packaged with 0.02 mm polyethylene film. Fruits without any treatment were used as control. All fruits were stored for 30 days at (1±1) ℃ and at 85% ~ 90% relative humidity and subjected to subsequent shelf life at (25±1) ℃. The decay index solidity, content of total soluble solids (TSS), ascorbic acid (Vc) and H2O2, superoxide anion (O2.-) production rate, activities of superoxide dismutase (SOD), catalase (CAT) and lipoxygenase (LOX), membrane permeability, malondialdehyde (MDA) content, contents of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and energy charge (EC) were analyzed during the cold storage and shelf life. [Result]Results indicated that contents of ATP and ADP in the control fruit decreased rapidly in 10 days of cold storage. Both SOD and CAT activity were observed to have a decrease during the whole cold storage and subsequent ripening of the control fruits while th O·-2 production rate, H2O2 content and MDA content increased significantly, leading to increase in membrane lipid peroxidation level and the damage degree of the membrane integrity. Compared with the control, short-term N2 treatment in combination with MAP treatments effectively reduced decay index as evidence in showing that the decay index was only 55.56% of the control on day 4 of shelf life. Furthermore, the application of short-term N2 treatment in combination with MAP effectively increased contents of ATP and ADP content and EC value, enhanced activities of CAT and SOD, delayed increases in both O·-2 production rate and H2O2 content and reduced MDA content and membrane permeability. Thus the treatments maintained the nutritional quality during low temperature storage and subsequent shelf life at room temperature. Correlation analysis showed that EC value was very significantly negatively correlated with O·-2 production rate (R2=0.971 2), H2O2 content (R2=0.974 6) and membrane permeability (R2=0.967 8). These results suggested that short-term N2 treatment in combination with MAP treatments maintained high energy level and antioxidant levels, delayed the accumulation of ROS and alleviated the process of membrane lipid peroxidation, thereby delaying the ripening and senescence and maintaining the quality of honey peach. [Conclusion] Thus, the extension of shelf life of honey peach by short-term N2 treatment in combination with MAP might be due to the improvement of energy status and antioxidant properties, and alleviation of membrane damage.
Key words: honey peach    N2 pre-treatment    modified atmosphere packaging    nutritional quality    reactive oxygen species metabolism    energy status    

水蜜桃(Prunus persica)属软(溶)质型桃,主要分布于我国长江流域的华东、华中及西南地区。水蜜桃皮薄汁多,味甜质糯,口感细腻,食用品质极佳(Xie et al.,2010)。但水蜜桃是典型的呼吸跃变型果实,采收时正值高温多雨季节,果实迅速进入呼吸高峰期,水蜜桃很快后熟和衰老。常温货架期仅3~5天(Ma,2003)。因此,探寻适宜的贮藏保鲜技术,对于减少水蜜桃果实采后腐烂损失,延长货架期具有重要的理论与实践意义。

目前国内外有关水蜜桃采后贮藏保鲜技术取得较快的发展,如冷藏(陈杭君等,2007徐淑芳等,2012)、涂膜保鲜(康若祎等,2005)、减压贮藏(李文香等,2005陈文烜等,2010)等,都对延缓水蜜桃的后熟衰老、延长果实的贮藏寿命具有一定的作用,但这些大多为单一的保鲜方式,在实际生产中具有一定的局限性,如低温贮藏能源消耗较大,而且单独的冷藏效果有限;化学保鲜和辐照保鲜存在安全、卫生方面的争议;减压贮藏等气调保鲜需要特定的仪器设备,目前在实际生产中难以大规模应用;生物保鲜存在专一性防腐作用的问题(林丽等,2003)。

复合贮藏保鲜是将2种及以上的贮藏保鲜方法相结合,可实现优势互补,达到理想保鲜效果的目的(Zhu et al.,2010)。氮气处理引起的超低氧胁迫可以抑制呼吸作用和乙烯生产,减轻果蔬生理病害,延缓果实后熟和衰老进程(Burdon et al.,1994),是近年来应用前景较好的一种保鲜技术。目前,短期氮气处理保鲜技术已在桃(Polenta et al.,2005)、西红柿(Lycopersicon esculentum)(Fallik et al.,2003)、猕猴桃(Actinidia deliciosa)(Song et al.,2009)、荔枝(Litchi chinensis)(Jiang et al.,2004)、香蕉(Musa spp.)(Yi et al.,2006)等果蔬上进行了研究。自发气调包装(MAP)技术采用不同于大气组成的混合气体置换包装食品周围的空气,并利用包装材料的透气性和阻气性,使食品始终处于适宜的气体环境中,抑制变质和腐败的发生,从而达到贮藏保鲜、延长货架期的目的(Fonseea et al.,2000),具有成本低、无公害、安全、绿色的优点。目前,国内外已有不少关于MAP对桃保鲜效果的研究(杨晓宇等,2002)。MAP包装结合其他保鲜技术的复合保鲜方式,如MAP结合低温控制(Song et al.,2013a2013b)等复合保鲜技术都具有较好保鲜效果。但短期氮气预处理结合MAP的保鲜对果蔬采后后熟衰老的研究仍未涉及,水蜜桃采后短期充氮处理结合MAP包装贮藏技术的研究也未见报道。

本研究采用充氮预处理结合MAP处理对“湖景蜜露”水蜜桃低温贮藏以及货架期间营养品质、抗氧化系统及能量水平的影响。旨在为水蜜桃贮藏保鲜提供有效、安全的途径,并为探究其保鲜以及果蔬采后衰老机理提供理论依据。

1 材料与方法 1.1 试验材料

选用试材为“湖景蜜露”水蜜桃,2013年7月22号采自浙江嘉兴市,采后3 h内立即运回实验室,(6±1)℃下预冷12 h。挑选八成熟、大小均一、无机械损伤、无病虫害的水蜜桃作为试验材料。

1.2 试验处理

处理组:在(6±1)℃条件下,将水蜜桃果实放入25 L带有三通阀的玻璃罐中,充入氮气6 h(保证罐内一直为100%氮气,在前期的预试验中发现6 h的贮藏效果最好),随后用厚度0.02 mm的聚乙烯薄膜袋密封包装,每袋装6个水蜜桃果实。对照组:不做任何处理。所有处理均贮于(1±1)℃、相对湿度85%~90%的保鲜库中。贮藏30天后,将果实从薄膜袋取出,置于(25±1)℃下模拟货架期。冷藏阶段每隔5天取样1次,常温货架期间每隔2天取样1次,测定相关指标。每个处理分3组(3个重复),每组10袋果实。

1.3 试验方法 1.3.1 腐烂指数、硬度及可溶性固形物(TSS)和维生素C(Vc)含量测定

腐烂指数:按照腐烂程度分成4级:4级为50%以上面积腐烂,3级为50%~30%面积腐烂,2级为30%~10%面积腐烂,1级为10%以下面积腐烂,0级为没有腐烂。腐烂指数=∑[腐烂级别×该级别个数]/最大腐烂级别×总个数。

硬度:去除约1 mm的果皮后,用TA-XT2i质构仪测定果实硬度。探头(SMSP/6)直径为5 mm,下降速度1 mm ·s-1,下降深度10 mm。重复20次,取平均值。

TSS含量:用手持阿贝折光仪测定果实TSS含量。

Vc含量:采用2,6-二氯靛酚滴定法。

1.3.2 过氧化氢(H2O2)含量和超氧阴离子(O2.-)产生速率测定H2O2含量的测定

参考Patterson等(1984)的方法,略有修改。称取样品2 g,加入5 mL预冷丙酮,10 000×g离心15 min。吸取1 mL上清液,加入0.1 mL 20%四氯化钛和0.2 mL 2 mol ·L-1浓氨水,反应30 min,离心,收集沉淀部分。用3 mL 1 mol ·L-1 H2SO4溶解沉淀,再离心,测定上清液在410 nm波长处吸光度值。用H2O2标准曲线计算样品H2O2的含量。

O2.-产生速率参考王爱国等(1990)的方法。以亚硝酸盐做标准曲线计算样品中O2.-的产生速率。

1.3.3 超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及脂氧合酶(LOX)活性测定

SOD活性:参照曹建康等(2007)的方法。以1 h内抑制NBT光还原50%的酶液量为1个酶活单位(U)。CAT活性:参照陈杭君等(2013)的方法。1个过氧化氢酶活力单位(U)为每克每分钟引起光吸收值变化0.001所需的酶量。LOX活性:参照陶菲等(2008)田寿乐(2006)的方法,略作修改。1个LOX酶活单位(U)为每克每分钟吸光度变化值增加0.01所需的酶量。

1.3.4 膜透性及丙二醛(MDA)含量测定

膜透性:膜透性以果实的相对电导率来表示。用直径10 mm打孔器从10个桃果实胴部分别采集圆柱状果肉,切成1 mm组织圆片后,从每个果实中取1块圆片置于布氏漏斗上,分2次用50 mL去离子水淋洗,用吸水纸吸干后装入盛有40 mL去离子水的小烧杯中,25 ℃水浴恒温3 h后,用电导率仪测定电导度C0,然后加热煮沸10 min并冷却至25 ℃,测定电导度C1。相对电导率(%)=C0/C1×100%。

MDA含量:参考Wang等(2005)的方法,采用硫代巴比妥酸比色法测定。

1.3.5 蛋白质含量的测定

参照王学奎(2006)的方法,采用考马斯亮蓝法,以牛血清白蛋白做标准曲线。

1.3.6 腺苷三磷酸(ATP)、腺苷二磷酸(ADP)和腺苷磷酸(AMP)含量及能荷(EC)值的测定

参照林德球等(2008)的方法,略作修改。称取2 g果肉用液氮研磨后加入6 mL 0.6 mol ·L-1高氯酸溶液,冰浴提取,在4 ℃、15 000×g离心20 min,迅速取3 mL上清液用1 mol ·L-1的KOH溶液调至pH6.5-6.8,将中和后的上清液在冰浴中稳定30 min,以沉淀大部分高氯酸钾,过滤,滤液定容至4 mL,用0.22 μm滤膜过滤,滤液于-20 ℃下保存。

ATP,ADP和AMP的测定:用HPLC法测定ATP,ADP和AMP的含量(ACQUITY Ultra Performance LC超高效液相色谱系统),色谱条件为ACQUITY UPLC@HSS T3柱(2.1 mm×100 mm column),检测波长259 nm,流动相为0.01 mol ·L-1 pH 7.0磷酸钾缓冲液。流速0.2 mL ·min-1,柱温25 ℃,进样体积为20 μL。

能荷按下列公式计算:EC =([ATP]+ 0.5〖ADP])/([ATP]+[ADP]+[AMP])。 1.4 数据统计

试验数据用Excel 2007和SPSS 16.0软件进行统计处理,所有数据为3次重复的平均值和标准误。采用SPSS 16.0,进行邓肯氏多重差异分析(P< 0.05)。

2 结果与分析 2.1 对水蜜桃采后营养品质的影响

图 1 A和1 B所示:对照组在冷藏第5天已开始出现果实腐烂现象,而短期氮气处理结合MAP处理组第15天开始出现腐烂。

货架期4天时,短期充氮结合MAP处理的腐烂指数仅为对照果实的55.56%,说明短期充氮结合MAP处理可以有效地抑制果实腐烂,延长货架期。果实硬度是反映果实质地和耐贮性的重要指标。从图 1C可知,随着冷藏时间的延长,桃果实的硬度逐渐下降,低温贮藏30天时,处理组果实硬度显著高于对照组(P < 0.05)。常温货架期间,对照组硬度几乎不再变化,可能是果实发生冷害,出现果实木质化。而处理组进入常温货架期后,硬度下降,果实正常后熟软化(图 1D)。可溶性固形物(TSS)和维生素C(Vc)含量与果实营养价值和风味密切相关。在整个冷藏时期,果实TSS呈先上升后下降趋势(图 1E)。常温货架存放期间,果实中TSS含量有所上升,随后再下降(图 1F),这可能是果实采后后熟中淀粉类物质转换为可溶性糖。但无论是冷藏还是常温货架存放期间,短期充氮结合MAP处理组的果实TSS含量都远远高于对照组。Vc含量在低温贮藏过程中呈下降趋势(图 1G),常温货架存放4天,果实内维生素含量继续快速下降,但短期充氮结合MAP处理组果实的Vc含量仍显著高于对照组(P< 0.05)(图 1H)。可见,N2预处理结合MAP复合保鲜可以较好地保持果实中的TSS和Vc含量,保持水蜜桃的营养和风味。

图 1 N2预处理结合MAP复合保鲜处理对水蜜桃采后冷藏及货架品质的影响 Fig. 1 Effect of short-term N2 treatment in combination with MAP on the quality of honey peach fruit during storage and sequent shelf life — ● — 对照 Control — ○ — 短期充氮结合MAP处理 Short-term N2 treatment in combination with MAP, 下同。The same below.
2.2 对水蜜桃采后活性氧代谢的影响

O2.-和H2O2是植物体内产生的2种主要的活性氧,O2.-被催化生成H2O2,H2O2则进一步转化为活性更强的·OH-离子,诱发植物的膜脂过氧化。H2O2含量在低温和常温货架存放期间均呈逐渐上升的趋势,短期充氮结合MAP处理显著降低了水蜜桃果实中H2O2含量的增加幅度,至常温4天时,其H2O2含量仅为对照的81.2%(P < 0.05)(图A,B)。O2.- 产生速率呈先上升后下降趋势,冷藏5天达到最大值,10天后又开始缓慢上升,直至货架期结束。但整个贮藏期间,短期充氮结合MAP处理组的O2.- 产生速率明显低于对照组。至货架存放4天时,对照组O2.-产生速率是短期充氮处理结合MAP处理组的1.39倍(P < 0.05),(图 2CD)。SOD能够清除超氧自由基,还可以与POD,CAT协同来清除果蔬体内的H2O2和O2.-。如图 2EF所示,对照组SOD活性在冷藏及常温货架期间均呈现下降的趋势,短期充氮结合MAP处理后,果实的SOD活性在冷藏10天前期升高,之后开始下降。置于常温货架时,则出现先上升后下降的趋势。但整个贮藏阶段,短期充氮结合MAP处理组SOD活性始终高于对照组(图 2EF)。与SOD活性变化相似,CAT活性在贮藏期间总体上也呈现下降的变化趋势,前短期充氮处理结合MAP处理后,果实CAT活性无论在低温贮藏还是常温货架期间,都显著高于对照(P< 0.05)(图 2GH)。由此可见,N2预处理结合MAP复合保鲜提高了果实抗氧化酶SOD和CAT的活性,有效地抑制了活性氧的积累。

图 2 N2预处理结合MAP复合保鲜处理对水蜜桃采后冷藏及货架活性氧代谢的影响 Fig. 2 Effect of short-term N2 treatment in combination with MAP on the reactive oxygen metabolism of honey peach fruit during storage and sequent shelf life
2.3 对水蜜桃采后膜稳定性的影响

果实在成熟衰老过程中,活性氧的不断积累会引起细胞膜脂过氧化作用,导致膜透性上升和膜脂过氧化的最终产物MDA增多。由图 3A~D可知,随着低温贮藏时间的延长,MDA含量和膜透性均不断增加,至常温货架期后,MDA含量和膜透性持续快速增加。短期充氮结合MAP处理明显抑制冷藏及货架期间MDA含量及膜透性,常温放置4天后,短期充氮结合MAP处理组的MDA含量和膜透性分别为对照组的70.6%和85.2%(P < 0.05)。LOX活性在低温贮藏前25天,变化不大,冷藏25天后迅速增强,这可能与膜脂过氧化启动作用有关。短期充氮结合MAP处理后,LOX活性在冷藏25天后的增加幅度明显下降(P< 0.05)。常温货架期间,LOX活性则呈现先上升后下降的趋势,短期充氮结合MAP处理明显抑制了LOX货架期间的增加(图 3F)。短期N2预处理结合MAP复合保鲜能够减轻膜脂过氧化程度,维持较好细胞膜完整性。

图 3 N2预处理结合MAP复合保鲜处理对水蜜桃采后冷藏及货架膜稳定性的影响 Fig. 3 Effect of short-term N2 treatment in combination with MAP on the stability of membrane of honey peach fruit during storage and sequent shelf life
2.4 对水蜜桃采后能量水平的影响

图 4A~D 可知,ATP和ADP在低温贮藏及常温货架期间均呈现下降的趋势。短期充氮结合MAP处理后,果实组织中ATP和ADP含量与对照相比则保持较高的水平。与ATP和ADP的变化趋势相反,AMP含量低温贮藏及常温货架期间则呈现不断上升趋势。与对照相比短期充氮结合MAP处理抑制了冷藏25天后AMP含量的增加,并且使得AMP在常温货架期间保持较低的水平(P < 0.05)(图 4EF)。果能荷值随着冷藏以及常温货架期的延长呈下降趋势,短期充氮结合MAP处理明显抑制了整个贮藏过程中能荷的下降(P < 0.05)。这些结果说明N2预处理结合MAP可显著维持水蜜桃果实采后较高的能量水平。

图 4 N2预处理结合MAP复合保鲜处理对水蜜桃采后冷藏及货架能量状态的影响 Fig. 4 Effect of short-term N2 treatment in combination with MAP on the energy status of honey peach fruit during storage and sequent shelf life
3 讨论

低温贮藏是果蔬贮藏保鲜的常用方法,能在一定程度上延迟果蔬采后成熟软化过程,但随着冷藏时间的延长,TSS和Vc仍出现较大幅度的下降。本研究表明,N2预处理结合MAP复合保鲜可显著抑制冷藏水蜜桃果实的后熟软化过程,有效地保持水蜜桃采后低温贮藏及货架期的营养品质,表现在抑制冷藏后期TSS及Vc含量的下降,显著抑制低温贮藏期果实硬度的下降,维持果实组织较高的TSS及Vc含量(图 1E~H)。

果实的成熟衰老与活性氧代谢及能量代谢水平有着密切的关系。在果实采后成熟衰老过程中,往往伴随着活性氧的大量积累(Brennan et al.,1977)及能量代谢水平的降低(Wang,2013)。活性氧,特别是O2.-的积累会促进细胞膜脂过氧化作用,破坏细胞膜的完整性,进而引起细胞衰老死亡。而脂质过氧化产物的增加,又会进一步加速O2.-的生成及H2O2的积累(Jimenez et al.,2002)。ATP可维持果实较高的自由基清除能力,减少自由基的积累。Veltment等(2003)发现梨(Pyrus communis)在贮藏过程中组织内的ATP亏损会导致自由基积累增多。Yi等(2010)在荔枝的研究中得出,

外源ATP处理果实能维持果实较高的自由基清除能力,提高抗氧化酶的活性,进而减轻组织自由基的积累,延缓果实衰老。Wang等(2013)对采后荔枝的研究,进一步从分子水平验证能量在果实的成熟和衰老过程中的重要作用。本研究发现,随着冷藏及常温货架存放时间的延长,“湖景蜜露”水蜜桃果实组织中的ATP,ADP含量和能荷水平低温贮藏10天后即开始出现明显降低,自由基清除酶SOD和CAT则在整个贮藏过程中均呈现明显的下降趋势,H2O2和O2.-的含量明显增加,而MDA含量与膜透性也呈现出大幅度的上升,导致膜脂过氧化的增加和膜完整性的破坏最终导致果实的衰老。N2预处理结合MAP贮藏维持了组织中较高的ATP,ADP含量和能荷水平以及SOD和CAT等抗氧化酶的活性,减少了H2O2和O2.-的积累,抑制MDA含量与膜透性增加,保持了细胞膜的完整性,降低果实的腐烂率,维持了较高的TSS,Vc含量,保持果实较好的营养品质,进而延缓水蜜桃果实的后熟和衰老。从能荷与各个指标的线性相关性来看,在贮藏过程中,能荷值与O2.-产生速度(R2=0.971 2)、H2O2含量(R2=0.974 6)及膜透性(R2=0.967 8)具有显著负相关性,O2.-的产生速度与细胞膜过氧化水平(MDA含量)的增加趋势是基本吻合,也表明维持组织较高的能量代谢水平有利于减少自由基的积累,保持细胞膜的相对完整性。这与Song等(2013)在茭白(Dianthus caryophyllus)采后衰老过程中研究一致。

4 结论

短期充氮结合MAP处理显著地抑制水蜜桃果实的腐烂率及硬度的下降,维持较高的TSS,Vc含量,减轻膜脂过氧化作用,保持膜的完整性,从而保持水蜜桃采后冷藏及常温货架期间的营养品质,延长货架期。短期充氮结合MAP处理的可能保鲜机理:维持果实组织较高的能量水平及抗氧化水平,减少活性氧自由基的积累,减轻膜脂过氧化作用,最终延缓果实的衰老,延长货架期。

参考文献(References)
[1] 曹建康,姜微波,赵玉梅.2007.果蔬采后生理生化实验指导.北京:中国轻工业出版社.
(Cao J K,Jiang W B,Zhao Y M.Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables.Beijing: China Light Industry Press.[in Chinese])(1)
[2] 陈杭君,毛金林,宋丽丽,等.2007.温度对南方水蜜桃贮藏生理及货架期品质的影响.中国农业科学,40(7): 1567-1572.
(Chen H J,Mao J L,Song L L,et al. 2007.Effects of different temperatures on postharvest physiology and shelf quality in china southern peaches.Scientia Agricultura Sinica,40(7): 1567-1572[in Chinese]).(1)
[3] 陈杭君,王翠红,郜海燕,等.2013.不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响.中国农业科学,46(6):1230-1236.
(Chen H J,Wang C H,Gao H Y,et al. 2013.Effects of packing on the postharvest quality and the antioxidant activity of blueberry.Scientia Agricultura Sinica,46(6): 1230-1236[in Chinese]).(1)
[4] 陈文烜,郜海燕,陈杭君,等.2010.减压贮藏对软溶质水蜜桃采后生理和品质的影响.农业机械学报,41(9): 108-112.
(Chen W X,Gao H Y,Chen H J,et al. 2010.Effects of hypobaric on postharvest physiology and quality of flesh-melting textured juicy peach.Transactions of the Chinese Society for Agricultural,41(9): 108-112[in Chinese]).(1)
[5] 康若祎,郁志芳,陆兆新,等.2005.壳聚糖涂膜对冷藏白凤水蜜桃品质变化的影响.食品科学,26(2): 228-231.
(Kang R Y,Yu Z F,Lu Z X,et al. 2005.Chitosan coating effects on "Baifeng" peach quality during refrigeration.Food Science,26(2): 228-231[in Chinese]).(1)
[6] 李文香,张慜,陶菲,等.2005.真空预冷结合减压贮藏保鲜水蜜桃.食品与生物技术学报,24(5): 42-46.
(Li W X,Zhang M,Tao F,et al. 2005.Study of vacuum precooling combined with hypobaric storage on keeping fresh of honey peach.Journal of Food Science and Biotechnology,24(5): 42-46[in Chinese]).(1)
[7] 林丽,田世平,秦国政,等.2003.两种拮抗酵母菌对桃果实贮藏期间主要病害的防治效果.中国农业科学,36(2):1535-1539.
(Lin L,Tian S P,Qin G Z,et al. 2003.Biocontrol of postharvest diseases in peach fruits using two antagonistic yeasts during storage periods.Scientia Agricultura Sinica,36(2):1535-1539[in Chinese]).(1)
[8] 林德球,刘海,刘海林,等.2008.高氧对香蕉果实采后生理的影响.中国农业科学,41(1):201-207.
(Lin D Q,Liu H,Liu H L,et al. 2008.Effect of high oxygen on postharvest physiology of banana fruit.Scientia Agricultura Sinica,41(1): 201-207[in Chinese]).(1)
[9] 陶菲,郜海燕,葛林梅,等.2008.加工工艺对山核桃脂肪氧化的影响.中国食品学报,8(1):99-102.
(Tao F,Gao H Y,Ge L M,et al. 2008.The effect of process technology on lipoxygenation of walnut(Carya Cathayensis Sarg.).Journal of Chinese Institute of Food Science and Technology,8(1): 99-102[in Chinese]).(1)
[10] 田寿乐,周俊义.2006.不同贮藏温度与鲜枣果实中保护酶及脂氧合酶活性变化的关系.河北农业大学学报,29(1):46-49.
(Tian S L,Zhou J Y.2006.Relationship between different storage temperature and changes of protective enzyme or LOX in fresh chinese jujube.Journal of Agricultural University of Hebei,29(1): 46-49.[in Chinese]).(1)
[11] 王学奎.2006.植物生理生化实验原理和技术.北京:高等教育出版社.
(Wang X K.Experiment principle and technology of physiology and biochemistry of plant.Beijing: Higher Education Press[in Chinese]).(1)
[12] 王爱国,罗广华.1990.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,26(6):55-57.
(Wang A G,Luo G H.1990.Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants.Plant Physiology Communications,26(6): 55-57[in Chinese]).(1)
[13] 许淑芳,张学英,陈海江,等.2012.不同贮藏温度对桃果实品质的影响.北方园艺,13: 173-176.
(Xu S F,Zhang X Y,Chen H J,et al. 2012.Effect of different storage temperature on the quality of peach.Northern Horticulture,13: 173-176[in Chinese]).(1)
[14] 杨晓宇,田承瑞,马岩松,等.2002.MAP处理对甜樱桃贮藏生理的影响.食品科学,23(6):148-150.
(Yang X Y,Tian C R,Ma Y S,et al. 2002.Effect of MAP on the storage physiology of sweet cherry.Food Science,23(6): 148-150[in Chinese]).(1)
[15] Burdon J N,Dori S,Lomanlec E,et al. 1994.Effect of prestorage treatments on mango fruit ripening.Annals of Applied Biology,125(3): 581-587.(1)
[16] Brennan T,Frenkel C.1977.Involvement of hydron peroxide in the regulation of senescence in pear.Plant Physiology,59(3):411-416.(1)
[17] Fonseea S C,Oliveria F A,Lino L B,et al. 2000.Modeling O2 and CO2 exchange for development of perforation mediated modified atmosphere packaging.Journal of Food Engineering,43(1):9-15.(1)
[18] Fallik E,Polevaya Y,Tuvia-Alkalai S,et al. 2003.A 24-h anoxia treatment reduces decay development while maintaining tomato fruit quality.Postharvest Biology and Technology,29(2):233-236.(1)
[19] Jimenez A,Creissen G,Kular B,et al. 2002.Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening.Planta,214(5):751-758.(1)
[20] Jiang Y M,Su X G,Duan X W,et al. 2004.Anoxia treatment for delaying skin browning,inhibiting disease development and maintaining the quality of litchi fruit.Food Technology and Biotechnology,42(2):131-134.(1)
[21] Ma Z S,2003. Peach Excellent species and no social effects of pollution cultivate technology. Beijing: Agricultural Publishing House,(1)
[22] Polenta G,Budde C,Murray R. 2005. Effects of different pre-storage anoxic treatments on ethanol and acetaldehyde content in peaches.Postharvest Biology and Technology,38(3):247-253.(1)
[23] Patterson B D,Macrae E A,Ferguson I B.1984.Estimation of hydrogen peroxide in plant extracts using titanium(IV).Analytical Biochemistry,139(2),487-492.(1)
[24] Song L L,Gao H Y,Chen H J,et al. 2009.Effects of short-term anoxic treatment on antioxidant ability and membrane integrity of postharvest kiwifruit during storage.Food Chemistry,114(4):1216-1221.(1)
[25] Song L L,Liu H,You Y L,et al. 2014.Quality deterioration of cut carnation flowers involves in antioxidant systems and energy status.Scientia Horticulturae,170: 45-52.
[26] Song L L,Chen H G,Gao H Y,et al.2013.Combined modified atmosphere packaging and low temperature storage delay lignification and improve the defense response of minimally processed water bamboo shoot.Chemistry Central Journal,7(1):147-155.(2)
[27] Veltman R H,Lenthéric I,Van der Plas L H W,et al. 2003.Internal browning in pear fruit(Pyrus communis L.cv Conference)may be a result of a limited availability of energy and antioxidants.Postharvest Biology and Technology,28(2):295-302.(1)
[28] Wang Y S,Tian S P,Xu Y.2005.Effects of high oxygen concentration on pro-and anti-oxidant enzymes in peach fruits during postharvest periods.Food Chemistry,2005,91(1):99-104.(1)
[29] Wang H,QianZ J,Ma S M,et al. 2013.Energy status of ripening and postharvest senescent fruit of litchi(Litchi chinensis Sonn.).BMC Plant Biology,13(1):55-71.(2)
[30] Xie R J,Li X W,Chai M L,et al. 2010.Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers.Scientia Horticulturae,125(4):622-629.(1)
[31] Yi C,Jing Y M,Sun J,et al. 2006.Effects of short-term N2 treatments on ripening of banana fruit.Journal of Horticultural Science and Biotechnology,81(6):1025-1028.(1)
[32] Yi C,Jiang Y M,Shi J,et al. 2010.ATP-regulation of antioxidant peoperties and phenolics in litchi fruit during browning and pathogen infectiong process.Food Chemistry,118(1):42-47.(1)
[33] Zhu L Q,Zhou J,Zhu S H.2010.Effect of a combination of nitric oxide treatment and intermittent warming on prevention of chilling injury of 'Feicheng' peach fruit during storage.Food Chemistry,121(1): 165-170.(1)