林业科学  2015, Vol. 51 Issue (2): 60-68   PDF    
DOI: 10.11707/j.1001-7488.20150208
0

文章信息

高超, 袁德义, 杨亚, 王碧芳, 刘冬明, 邹锋, 谭晓风
Gao Chao, Yuan Deyi, Yang Ya, Wang Bifang, Liu Dongming, Zou Feng, Tan Xiaofeng
油茶自交不亲和性的解剖特征
Anatomical Characteristics of Self-Incompatibility in Camellia oleifera
林业科学, 2015, 51(2): 60-68
Scientia Silvae Sinicae, 2015, 51(2): 60-68.
DOI: 10.11707/j.1001-7488.20150208

文章历史

收稿日期:2014-04-21
修回日期:2014-06-10

作者相关文章

高超
袁德义
杨亚
王碧芳
刘冬明
邹锋
谭晓风

油茶自交不亲和性的解剖特征
高超, 袁德义, 杨亚, 王碧芳, 刘冬明, 邹锋, 谭晓风    
中南林业科技大学 经济林培育与保护教育部重点实验室 经济林育种与栽培国家林业局重点实验室 长沙 410004
摘要:【目的】 比较研究油茶自交与异交授粉后花粉管在雌蕊中生长行为的差异,探明油茶自交不亲和性的类型及特征,进一步认识油茶生殖特性的同时丰富、完善其生殖生物学研究资料,为促进油茶增产提供理论依据和研究基础。【方法】 根据花粉管荧光显微观察的试验原理并有针对性地结合油茶雌蕊的特点,综合运用荧光显微镜结合经过改良的荧光压片法、荧光切片法和常规石蜡切片法观察油茶雌蕊结构特征和花粉管在雌蕊中的生长情况,运用扫描电镜重点观察油茶自交花粉管发生的不亲和反应特征,对油茶自交不亲和性进行解剖学方面的研究。【结果】 油茶为开放型花柱,两边贴合的中空花柱道是花粉管生长通道,由一层特化的内表皮细胞构成,多根花柱在基部合生进而形成子房中的空心中轴胎座。自交与异交授粉后,花粉管在柱头、花柱中部的生长情况无明显差异。到达花柱基部时,自交花粉管生长减缓,大部分生长停滞,只有少数能够长入子房,但最终也在子房中停滞而未能达到胚珠。生长停滞的花粉管末端荧光异常明亮,并伴随出现膨大、分叉、卷曲、折叠、波浪状等形状,呈现出不亲和反应。扫描电镜观察这些异常现象是由于花粉管壁局部加厚。自交花粉管的不亲和反应伴随花柱道内表皮细胞从花柱基部到子房的逐渐紧贴而出现。异交花粉管可顺利进入子房,经珠柄到达珠孔处转弯90°进入胚囊。【结论】 通过解剖学结果可明确油茶为自交不亲和性植物,自交不亲和反应发生在花柱基部接近子房处,为合子前期不亲和类型。油茶自交花粉管生长受到抑制的生理、分子机制是今后研究的方向。针对生产中不同油茶品种间座果率不同的现象,探讨各品种间自交不亲和强度存在差异的机制也是研究的重点。油茶自交不亲和性反应发生在中空且花柱道相互贴合较为紧密的花柱基部接近子房处,而却未发生在花柱道间隙相对宽松的花柱中,这一现象是否普遍存在于中空型花柱的自交不亲和性植物中及这一特征是否为山茶属中其他自交不亲和性植物所共有还有待广泛探讨。
关键词油茶    自交不亲和性    花粉管    
Anatomical Characteristics of Self-Incompatibility in Camellia oleifera
Gao Chao, Yuan Deyi, Yang Ya, Wang Bifang, Liu Dongming, Zou Feng, Tan Xiaofeng    
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education Key Laboratory of Non-Wood Forest Products of State Forestry Administration Central South University of Forestry and Technology Changsha 410004
Abstract: [Objective] To investigate difference in the growth behavior of pollen tube in the pistil of Camellia oleifera after self- and out-cross pollination and to identify the types and characteristics of self-incompatibility of the plant. Further to enrich and complement the current understanding of C. oleifera in reproductive biology and also to provide a theoretical basis for increasing oil production. [Method] The structural characteristics of C. oleifera and the growth process of pollen tube in the pistil were observed using fluorescence microscopy combined with the modified fluorescent pallet method, fluorescence sectioning, and the routine paraffin method, according to the experimental principles of observation of the pollen tube under a fluorescence microscope as well as the characteristics of the pistil of C. oleifera. The incompatibility responses of the self-crossed pollen tube were observed using scanning electron microscopy to characterize the anatomic properties of the self-incompatibility of C. oleifera. [Result] The growth of the pollen tubes was observed via the stylar canal, comprised of a layer of specialized canal cells. The styles were open type and connected at the stylar base and formed a hollow placenta. After pollination, no significant difference was observed in the pollen tubes of the self-crossed and out-crossed stigma and medial styles. Pollen tubes of both styles reached the stylar base; however, a majority of the self-crossed pollen tubes grew slowly and resulted in an incompatible callose reaction as they failed to enter the locule. The magnified part of the self-pollinated pollen tubes revealed intumescence, bifurcation, coiling, folding, and wave lines that resulted from partially increased thickness of the pollen tube walls. The incompatible callose reaction was accompanied by gradual closing of the stylar canal, whereas the out-crossed pollen tubes successfully entered the locule with subsequent entry into the embryo sac at a 90° angle at the ovule micropyle position. [Conclusion] Based on the anatomical characteristics, we ascertained that C. oleifera was a self-incompatible plant and belonged to the prezygotic self-incompatibility type, which occurred between the stylar base and upper ovary. Future studies will be directed to understanding of the physiological and molecular mechanisms that restrict the growth of the self-crossed pollen tubes of C. oleifera. In view of the differences in fruit-setting rates among different varieties, focus will also be placed on the mechanisms behind the difference in the intensity of self-incompatibility of different varieties. Furthermore, self-incompatibility of C. oleifera occurs at the hollow stylar base where the stylar canals close intensely, which is close to the ovary, rather than in the style with a relatively loose interspace of the stylar canal. Whether this phenomenon is universal among the self-incompatible plants with hollow styles or the self-incompatible plants of the genus Camellia remains to be explored.
Key words: Camellia oleifera    self-incompatibility    pollen tube    

油茶(Camellia oleifera)为山茶科(Theaceae)山茶属(Camellia)常绿灌木或小乔木,是我国特有而重要的木本食用油料树种(庄瑞林,2008)。油茶种植利用历史悠久,但长期以来在生产中一直存在花多果少、坐果率低、产量低的现象,低产低效的问题成为长期制约我国油茶产业健康、高效发展的瓶颈。如何提高油茶的坐果率和增加单位面积的产量,已成为当前油茶产业中迫切需要研究解决的重要问题。我国科技工作者曾从油茶花期生态气候(林少韩等,1981曾燕如等,2010)、生育规律(黎章矩等,1992陈育松等,1963)、开花习性(曾燕如等,2009黎章矩,1983)、传粉途径(邓园艺等,2010)到影响油茶低产的内外因子(黎章矩等,2009林少韩等,1991)等多方面研究和探讨了可能导致油茶低产的原因,对油茶生长和结实规律有了一定认识,得出“异花授粉坐果率远高于自花授粉坐果率”的共识,表明油茶可能具有自交不亲和性的特点。

自交不亲和性(self-incompatibility,SI)是植物在长期进化过程中形成的一种预防近亲繁殖和促进异花授粉的机制之一(Silva et al., 2001),通常表现出自花授粉坐果率远低于异花授粉坐果率的特点。近来发现有些植物如蚁木属(Tabebuia)(Bittencourt et al., 2005)、Ipomopsis aggregata(Sage et al., 2006)、柑橘(Citrus reticulata ‘Wuzishatangju’)(Ye et al., 2009)、Cyrtanthus breviflorus(Vaughton et al., 2010)等自交传粉后,花粉萌发和花粉管生长没有受到抑制,花粉管能够穿过花柱到达子房,但最终仍然表现为自交不结实,这与传统定义的配子体自交不亲和中花粉管在花柱中被抑制的现象明显不同。Seavey等(1986)把这种现象称为后期自交不亲和(late-acting self-incompatibility,LSI)或子房自交不亲和(ovarian self-incompatibility,OSI)(Sage et al., 1999)。曾认为后期自交不亲和在被子植物中属于反常现象,但现在发现它广泛分布于显花植物中(Bittencourt et al., 2005; Sage et al., 2006)。另外,与后期自交不亲和一样,早期近交衰退(early-acting inbreeding depression)也可导致植物自交后坐果率降低。早期近交衰退是植物从形成合子后到发育为成熟种子的过程中发生的败育现象,是严格的合子后作用机制,通常认为主要由隐性有害基因的纯合导致(Charlesworth et al., 1999)。而发生在子房内的后期自交不亲和可发生于合子前或合子后,又由于发生部位深埋于层层包裹的子房组织细胞中,与早期近交衰退很难区分。目前已有研究提出了8种区分方法(郝祎祺等,2011),其中最简便、高效的是通过解剖学方法对比观察自交与异交授粉后的生殖生物学事件来加以区分。

关于山茶属植物茶树(Camellia sinensis)的自交不亲和性研究已有报道(Chen et al., 2012; Wachira et al., 2005),但对同为山茶属植物的油茶而言,自交不亲和的认识仅停留在现象表面,一直缺乏直观、可靠的试验证据明确油茶自交不亲和性。基于本研究组对油茶花芽分化与雌雄配子体发育(袁德义等,2011)、异交授粉受精及早期胚胎发育过程(廖婷等,2014)的相关研究积累,本研究在前期对随机选取的31个油茶品种进行自交花粉管荧光显微观测的基础上,重点以油茶品种‘华硕’(C. oleifera ‘Huashuo’)为试材,利用生殖生物学相关试验方法,对比研究自花与异花授粉后花粉管在雌蕊中的生长行为,从花粉管结构阐明油茶自花授粉坐果率低的生殖原因,为油茶生殖生物学研究提供理论基础,同时对油茶生产及育种具有重要的理论与实际意义。

1 材料与方法 1.1 试验材料

用国审油茶品种‘华硕’为母本,国审油茶品种‘湘林XLC15’(C. oleifera ‘Xianglin XLC15’)为异交授粉父本。材料种植于中南林业科技大学油茶科研工作站(位于湖南省长沙市望城区东城镇,113°21′ E,28°05′ N)。基地年平均降水量1 380 mm,年平均气温19.3 ℃,年积温5 463 ℃,年平均无霜期276~291天,年平均日照时数1 762 h,光热充足,冬寒期短,属典型中亚热带季风性湿润气候。土壤为红壤,肥力中等,pH 5.5左右,常规水肥管理。选择生长健壮并能正常开花结实的树体为取材对象。

1.2 试验方法

于2012年和2013年每年11月中旬油茶盛花期,分别收集‘华硕’和‘湘林XLC15’的花粉,对‘华硕’去雄后进行人工控制授粉(自花授粉:‘华硕’ב华硕’;异花授粉:‘华硕’ב湘林XLC15’)。在上午9:00左右授粉,用硫酸纸袋套袋,并吊牌标记,7天后拆袋。

参照廖婷等(2014)的研究结果并适当调整设定时间,分别采集自交与异交授粉后2,4,8,12,24,36,40,44,48,52,56,60,72,84,96,108,120 h的雌蕊,投到卡诺氏固定液[95%乙醇∶冰醋酸(V/V)=3∶1]中,抽气20 min并固定12 h后转入70%乙醇溶液保存,置于4 ℃冰箱中备用。

对授粉后2~120 h的雌蕊,采用首创的“双载玻片贴合两面观察法”观察花粉管在柱头、花柱和子房中的生长情况。具体方法如下:将雌蕊子房壁刮去,沿中轴将每根花柱连同下部的子房室切下;放入NaClO溶液中浸泡2 h(有效氯含量为8 000~10 000 mg·L-1),蒸馏水洗涤干净后转入8 mol·L-1的NaOH溶液中浸泡2 h,蒸馏水洗涤后再经0.5%水溶性苯胺蓝染液染色6 h;将花柱平展在薄载玻片上后滴上数滴苯胺蓝染液,用另一薄载玻片轻盖材料,不用压片,采用“载玻片+材料+载玻片”组合制片后进行花粉管荧光显微观察,并以Olympus BX-51荧光显微镜拍照。

根据花粉管荧光观察结果选取采样的雌蕊,进行常规石蜡切片,切片厚度13 μm。部分切片采用常规石蜡切片法制片(李和平,2009),铁矾-苏木精染色制片;部分切片脱蜡复水后,用0.3%苯胺蓝溶液染色2 h,在Olympus BX-51型荧光显微镜下观察、拍照。

用镊子和解剖刀分离出‘华硕’自交授粉雌蕊中的花粉管,用2.5%戊二醛固定液(0.1 mol·L-1磷酸缓冲液配制)前固定2 h,洗涤后用1%锇酸固定液后固定2 h,洗涤后乙醇梯度脱水,过渡到叔丁醇中后,冷冻干燥。将样品摆放在样品台上放入离子溅射仪中镀金20 min。用JSM-6390扫描电子显微镜进行观察、拍照。

2 结果与分析 2.1 油茶花柱与子房结构

油茶雌蕊由柱头、花柱和子房构成。油茶柱头为湿性柱头,柱头表面密布细小乳突细胞(图 1D),如同花粉捕捉器,在开花时展开最大面积尽可能多地接收花粉粒。花柱长12 mm左右,由3~5根组成,通常花柱上端2/3的部分相互分离,下端1/3处开始每根之间相互连接。花柱为空心花柱类型(图 1A,G),由表皮、皮层和花柱道内表皮构成,花柱道的内表皮是油茶花粉管生长的通道,内表皮细胞可向花柱道表面分泌黏液物质。花粉管进入花柱后,沿着内表皮细胞表面向下生长,这层细胞大且形状规则,细胞核大而明显,细胞质浓厚,具有腺质细胞的特点(图 1C)。花柱从上到下呈现出花柱道逐渐贴合的趋势,越往下花柱道间隙越来越小,特别是从花柱基部向下进入子房后,每根花柱的花柱道在子房中聚合到一起,各自成为一道狭小的缝隙(图 1B,M),同时各道之间相互连通。油茶子房室数量与花柱数量相等,子房通常是由3~5根花柱向下延续的心皮组织构成的3~5室结构,子房长5 mm左右,中轴胎座,由各心皮聚合而成的中轴依然中空,每室着生2列胚珠,每列3~4枚(图 1J)。胚珠倒生,由短小的珠柄着生在胎座上,双珠被,薄珠心。

图 1 油茶花柱结构及自交、异交花粉管在花柱中的生长 Fig. 1 Style structure and pollen tubes growth of C. oleifera with self and cross pollinations in style 标尺 Bars A,D,E,F,H,I,K,L,M,N,O: 40 μm; B,G,J: 1 000 μm; C: 50 μm.
CC: 引导组 织细胞Canal cell; Co: 皮层Cortex; Ep: 表皮Epidermis; Ov: 胚珠Ovule; Pa: 乳突细胞Papilla; PT: 花粉管Pollen tube; TT: 引导组织Transmitting tissue; VB: 维管束Vascular bundle.
A. 花柱中部横切面; B. 子房上部横切面,花柱道相互连通; C. 花柱道内表皮细胞(箭头)形状规则,细胞质浓厚,核大; D. 平展开未授粉的柱头,可见密布的乳突细胞(箭头); E. 异交6 h后花粉粒已大量萌发,花粉管经乳突细胞间隙进入花柱道; F. 自交6 h后花粉粒大量萌发,花粉管进入花柱道; G. 花柱1/2处,平展开的未授粉花柱,示花柱道; H. 异交花粉管在花柱中部生长; I. 自交花粉管在花柱中部生长; J. 平展开的未授粉花柱基部及子房室,可见花柱道引导组织一直延伸到珠柄处; K. 异交花粉管在花柱基部生长; L. 自交花粉管(箭头)生长到花柱基部,部分生长停滞; M. 未授粉的花柱基部横截面荧光显微图示; N. 异交花柱基部横截面荧光显微图示; O. 自交花柱基部横截面荧光显微图示,可见一个花柱道内异常发亮(箭头)。
A. The cross section of medial style; B. The cross section of upper part of ovary and stylar canal was connected with each other; C. The canal cell (showing by arrow) with regular shape, dense cytoplasm and large nucleus; D. The unpollinated stigma, a lot of papilla on it (showing by arrow); E. A lot of pollen germination after cross pollination 6 h, the pollen tube pass the papilla intercellular space and enter the stylar canal; F. A lot of pollen germination after self pollination 6 h and the pollen tubes enter the stylar canal; G. The middle of the style and we can see the transmitting tissue; H. Pollen tubes of cross pollination grew to the medial style; I. Pollen tubes of self pollination grew to the medial style; J. The unpollinated stylar base and locule, transmitting tissue extending to funicle; K. Pollen tubes of cross pollination grew to the stylar base; L. Pollen tubes (showing by arrow) of self pollination grew to the stylar base with part retardation; M. The fluorescence microscopy image of cross section of stylar base with unpollinated; N. The fluorescence microscopy image of cross section of stylar base with cross pollination; O. The fluorescence microscopy image of cross section of stylar base with self pollination, one of the stylar canal was abnormal brightness (showing by arrow).
2.2 自交与异交花粉管在花柱中的生长

油茶花粉授到柱头上后,随即开始水合并萌发长出花粉管,花粉管伸入乳突细胞间隙。花粉管经过乳突细胞长入柱头,进而汇总到花柱道向下生长。花粉管在花柱道中经内表皮腺细胞分泌的黏液层向下生长。从试验结果中可观察到,自花与异花授粉后,花粉粒在柱头的萌发情况并无差异,均能在柱头顺利萌发并进入花柱中生长(图 1EF)。授粉后24 h花粉管长到花柱中部,由于中空的花柱道两边相互贴合,花粉管基本都汇集在一起纵向生长,从形态上也未见明显差异(图 1HI)。授粉后40 h左右,花粉管到达花柱基部,异交花粉管继续向下生长(图 1K),但自交花粉管在花柱基部出现部分生长停滞,生长减缓,有少数能够向下生长进入子房。生长停滞的花粉管末端异常明亮(图 1L),并出现膨大、分叉、卷曲、折叠、波浪状等不亲和反应。从花柱基部的横向切片荧光也可看出,异交花柱各花柱道内花粉管分布均匀(图 1N),自交花柱中有部分花柱道中花粉管数量减少,部分却聚集较多,呈现出异常荧光分布(图 1O)。

2.3 自交与异交花粉管在子房中的生长

随着花粉管生长,进入子房,在中空的中轴胎座内继续生长。胎座内表皮细胞也为典型的腺质细胞,同花柱一样分泌黏液层保证花粉管生长。授粉后40~48 h,异交花粉管随即进入子房,沿着中空的胎座进入子房室(图 2C),可见大量花粉管沿着胎座内表皮细胞向胚珠方向生长。油茶胚珠珠孔由内珠被构成,当异交花粉管到达珠柄附近后,在接近珠孔时会转弯90°伸入珠孔随即进入胚囊(图 2EG)。但在自交授粉中,仅有少量花粉管进入子房(图 2A),最终在子房中停止生长,未能达到胚珠(图 2F),在停滞的花粉管末端依然出现膨大、分叉、卷曲、折叠、波浪状等不亲和现象(图 2B)。值得注意的是,自交花粉管的不亲和反应伴随花柱道内表皮细胞从花柱基部到子房的逐渐紧贴而出现。将自交花粉管从雌蕊组织中分离出来,用扫描电镜观察其出现不亲和反应部位的管壁结构发现,花粉管出现的膨大、分叉、卷曲、折叠和波浪状的现象,是由于花粉管壁局部加厚造成的(图 2D)。

图 2 油茶自交与异交花粉管在子房中的生长 Fig. 2 Pollen tubes growth of C. oleifera with self and cross pollinations in ovary 标尺 Bars A, C, E: 40 μm; B, F, G: 200 μm; D: 10 μm.
ES: 胚囊Embryo sac; II: 内珠被Inner integument; OI: 外珠被Outer integument; Ov: 胚珠Ovule; PT: 花粉管Pollen tube; TT: 引导组织Transmitting tissue; TW: 加厚管壁Thickening wall; VB: 维管束Vascular bundle.
A. 自交花粉管(箭头)进入子房,生长停滞,未能达到胚珠; B. 花粉管(箭头)放大,出现膨大、分叉、卷曲、折叠、波浪状等不亲和的胼胝质反应; C. 异交的大量花粉管(箭头)进入子房并到达胚珠; D. 子房中生长停滞的花粉管扫描电镜下观察管壁(箭头)出现局部加厚; E. 异交的花粉管(箭头)经珠孔转弯90°进入胚珠; F. 自交子房切片荧光,未见花粉管进入胚囊; G. 异交子房切片荧光,可见花粉管(箭头)经珠孔进入胚囊。
A. Self pollinated pollen tube (showing by arrow) entered the ovary with part retardation, but did not arrive at ovule; B. The pollen tube was magnified and phenomena such as intumescence, bifurcation, coiling, folding and wave lines resulting from the partially increased thickness of the pollen tube walls were noted; C. Cross pollinated pollen tubes (showing by arrow) enter the ovary abundantly and arrived at the ovule; D. The well (showing by arrow) of pollen tube with retardation in the ovary showed locally thickened by scanning electron microscope; E. Cross pollinated pollen tube (showing by arrow) pass the micropyle and enter the ovule; F. None self pollinated pollen tube entered the embryo sac through micropyle; G. Cross pollinated pollen tube (showing by arrow) passed through the nucellus, entering the embryo sac through micropyle.
3 讨论

被子植物广义的受精始于花粉在柱头水合并萌发长出花粉管,进入乳突细胞间隙后在花柱道或引导组织内生长,进入子房。花粉管经过珠孔通过退化的助细胞进入胚囊,释放出2个精细胞,分别与卵细胞和中央细胞融合,形成受精卵和胚乳,完成双受精。这一系列受精生物学事件复杂而精巧,具有严密的时间性和空间性(Weterings et al., 2004; Ge et al., 2007)。如果在这一过程中的任何一个环节出现障碍,则有可能影响到受精过程。自交不亲和是在受精过程中发生的主动识别和拒绝自交花粉的机制。根据自交不亲和发生的部位,可划分为合子前(prezygotic)和合子后(postzygotic)2种自我识别机制(Sage et al., 1999)。通常定义的发生在柱头表面的孢子体自交不亲和或发生在花柱中的配子体自交不亲和显然是合子前的作用机制(De Nettancourt,2001; Franklin-Tong,2008),而发生在子房内的后期自交不亲和也可能在合子前或合子后发生作用。根据后期自交不亲和发生的这一时空特征,可分为3类(或称为3个阶段型):第1类(第1阶段型)发生在合子形成前,花粉管能够进入子房但不能到达胚珠(Chen et al., 2012);第2类(第2阶段型)也发生在合子形成前,花粉管能够进入胚珠但不能受精形成合子(Taroda et al., 1982; Kenrick et al., 1986; Sage et al., 2006);第3类(第3阶段型)发生在合子形成后,卵细胞能够受精形成受精卵,但合子不能发育成胚(Bittencourt et al., 2005; Lipow et al., 2000; Sage et al., 1999)。根据本研究的解剖学结果来看,油茶自交花粉管能够进入子房,但未进入胚珠,在子房中发生抑制,生长停滞,根据后期自交不亲和的分类,属于第1类(第1阶段型)合子前的作用机制。

油茶作为重要的经济林树种,长期以来备受林业科技工作者关注,在品种选育(林国锋等,2010谭晓风等,20112012袁德义等,2012王湘南等,2008)、土肥水管理(胡冬南等,2011申巍等,2008郭春兰等,2012周政贤,1963)和树体管理(段伟华等,2013潘华平等,2011何志祥,2013)等方面做了大量工作并不断有研究报道。但与油茶开花结实密切相关的有性生殖研究仅有少量文献报道(曹慧娟,1965周良骝等,1991何春燕,2009),且缺乏系统性结果,始终未就自交坐果率低这一普遍认可的现象给出解释和深入探讨。另外,对山茶科植物有性生殖的研究仅集中在少数几种植物花药与胚珠的发育及大小孢子、雌雄配子体发育过程(Zou et al., 2013a; 2013b; Tsou,1997; Kapil et al., 1963),关于受精和胚胎发育的研究则不多。本研究在前期对油茶异花授粉受精及早期胚胎发育进行研究基础上,对自花授粉的生殖情况进行研究后发现油茶存在后期自交不亲和性,在以往的油茶有性生殖研究报道中均未见提及相关论断,这也是本研究在长期的油茶生殖生物学研究中首次明确提出这一观点。值得注意的是,Brewbaker(1957)提出花粉管与花柱组织必须密切接触才会发生不亲和的抑制作用,本研究观察到在中空型花柱的自交花粉管的不亲和反应同样出现在花柱道相互紧贴的子房中,而在间隙相对宽松的花柱中却未发生,这一现象是否普遍存在于中空花柱的自交不亲和性植物中还有待深入研究。另外,在对山茶属植物茶树(Chen et al., 2012; Wachira et al., 2005)的研究中也同样发现其具有后期自交不亲和性这一特点,这一特性是否为山茶属植物的共性还有待广泛探讨。

笔者在近年来对油茶有性生殖过程的研究中发现,按照传统的生殖生物学试验方法很难取得理想的结果,特别是观察授粉后花粉管在雌蕊中的原位生长情况。传统的花粉管荧光显微技术(Kho et al., 1968),先对植物材料(如花柱或子房)软化,再用苯胺蓝染料浸染处理,通过“盖玻片+材料+载玻片”组合压片后进行荧光观察。在此法中,植物材料仅仅是被软化,而花粉管是在引导组织中生长,压片后花粉管有可能被花柱组织遮挡,特别是针对一些花柱较大、组织较厚的植物观察效果极不理想。另外,压片的轻重程度很难掌握,压片过轻则组织之间重叠,影响观察效果;压片过重,材料破碎,无法真实再现花粉管生长轨迹和发育过程。传统压片方法多运用于雌蕊细小的植物(丁建庭等,2009),但对于雌蕊较大、花柱体细胞组织较厚的油茶则需要另辟蹊径。本研究中,先将雌蕊子房壁刮去,沿中轴将每根花柱连同下部的子房室切下,将分离后的材料依次浸泡在NaClO和NaOH溶液中,直到材料透明且软化,再经水溶性苯胺蓝染液染色,采用首创的“双载玻片贴合两面观察法”(即“载玻片+材料+载玻片”组合)制片后,进行花粉管荧光显微观察,可清晰观察到花粉管生长情况,不受雌蕊组织的干扰和遮挡,对于研究花粉管生长进程和准确判断花粉管生长受抑制的部位、时间及确定自交不亲和类型效果极为显著。

目前,我国林业工作者选育出油茶良种200多个(陈永忠,2008林国锋等,2010),这些栽培品种都是从实生群体中选育而来,性状差异很大(林少韩等,1981)。在现有油茶林中,虽然普遍存在坐果少、产量低的现象,但在调查中也发现有部分品种或实生类群坐果率高于平均水平。本研究所用的湖南省主栽品种‘华硕’,在一定程度上反映出油茶具有自交不亲和性这一特性,但针对在自然条件下观察到的各品种坐果率存在一定差异的现象,说明品种间的自交不亲和程度可能存在差别。所以在今后的研究中,继续深入探究油茶自交不亲和的机制、探讨各品种间不亲和强度存在差异的原因及如何克服自交不亲和性成为重要的研究方向。另外,在过去长期的生产栽培中,油茶多用种子实生繁殖,导致油茶群体中遗传基因交流频繁,具有高度杂合性,而且生殖周期较长,没有自交、杂交的纯系。所以在众多的油茶品种或实生群体中,是否存在自交亲和的类型?若能发现自交亲和的油茶植株,则可进一步比较自交亲和与不亲和的作用机制,同时也为油茶生产及育种工作开辟新的途径。

参考文献(References)
[1] 曹慧娟. 1965. 油茶胚胎学的观察. 植物学报, 13(1): 44-60.
(Cao H J. 1965. Embryological observation on Camellia oleifera. Acta Botanica Sinica, 13(1):44-60[in Chinese]).(1)
[2] 陈育松, 胡玉琴, 欧阳适. 1963. 油茶落花落果的初步观察. 林业科学, 8(3): 267-270.
(Chen Y S, Hu Y Q, Ouyang S. 1963. A preliminary observation of blossom and fruit drop on Camellia oleifera. Scientia Silvae Sinicae, 8(3): 267-270.[in Chinese]) (1)
[3] 陈永忠. 2008. 油茶优良种质资源. 北京: 中国林业出版社.
(Chen Y Z. 2008. Oil tea Camellia superior germplasm resources. Beijing: China Forestry Publishing House.[in Chinese])(1)
[4] 邓园艺, 喻勋林, 罗毅波. 2010. 传粉昆虫对我国中南地区油茶结实和结籽的作用. 生态学报, 30(16): 4427-4436.
(Deng Y Y, Yu X L, Luo Y B. 2010. The role of native bees on the reproductive success of Camellia oleifera in Hunan Province, Central South China. Acta Ecologica Sinica, 30(16): 4427-4436[in Chinese]).(1)
[5] 丁建庭, 申家恒, 李 伟, 等. 2009. 水稻双受精过程的细胞形态学及时间进程的观察. 植物学报, 44(4): 473-483.
(Ding J T, Shen J H, Li W, et al. 2009. Cytological observation of double fertilization and its duration in Oryza sativa. Acta Botanica Sinica, 44(4): 473-483[in Chinese]).(1)
[6] 段伟华, 袁德义, 高 超, 等. 2013. 普通油茶不同树体结构与光能利用的关系. 林业科学研究, 26(1): 118-122.
(Duan W H, Yuan D Y, Gao C, et al. 2013. The relationship between tree composition and light utilization of Camellia oleifera. Forest Research, 26(1): 118-122[in Chinese]).(1)
[7] 郭春兰, 张 露, 雷 蕾, 等. 2012. 不同林龄油茶林土壤酶活性及养分特征. 草业科学, 29(11): 1647-1654.
(Guo C L, Zhang L, Lei L, et al. 2012. Soil enzyme activity and nutrient characteristics of Camellia oleifera forest at different plantation ages. Pratacultural Science, 29(11): 1647-1654[in Chinese]).(1)
[8] 郝祎祺, 赵鑫峰. 2011. 被子植物早期近交衰退与晚期自交不亲和. 生物多样性, 19(1): 106-112.
(Hao Y Q, Zhao X F. 2011. Distinguishing early-acting inbreeding depression from late-acting ovarian self-incompatibility. Biodiversity Science, 19(1): 106-112[in Chinese]).(1)
[9] 何春燕. 2009. 普通油茶有性生殖过程的解剖学研究. 长沙: 中南林业科技大学硕士学位论文.
(He C Y. 2009. The anatomical studies on the process of sexual reproduction of Camellia oleifera. Changsha: MS thesis of Central South University of Forestry and Technology[in Chinese]).(1)
[10] 何志祥. 2013. 油茶树体调控模式与技术的研究. 长沙: 中南林业科技大学博士学位论文.
(He Z X. 2013. The regulation patterns and technology of tree structure in Camellia oleifera. Changsha: PhD thesis of Central South University of Forestry and Technology[in Chinese]).(1)
[11] 胡冬南, 胡玉玲, 牛德奎, 等. 2011. 施肥配比与芸苔素内酯对油茶生长的影响研究. 林业科学研究, 24(4): 505-511.
(Hu D N, Hu Y L, Niu D K, et al. 2011. Effects of fertilizer formula and brassinolide on growth of Camellia oleifera. Scientia Silvae Sinicae, 24(4): 505-511[in Chinese]).(1)
[12] 李和平. 2009. 植物显微技术. 北京: 科学出版社.
(Li H P. 2009. Plant microscopy technique. Beijing: Science Press.[in Chinese])(1)
[13] 黎章矩. 1983. 油茶开花习性与产量关系的研究. 经济林研究, 1(1): 31-41.
(Li Z J. 1983. The relationship between flowering habits and yield on Camellia oleifera. Economic Forest Researches, 1(1): 31-41[in Chinese]).(1)
[14] 黎章矩, 施拱生, 吴德华. 1992. 油茶生育规律及其影响因子研究. 经济林研究, 10(1): 21- 26.
(Li Z J, Shi G S, Wu D H. 1992. Influencing factors on oil content of oil tea Camellia. Economic Forest Researches, 10(1): 21-26[in Chinese]).(1)
[15] 黎章矩, 曾燕如, 戴文圣. 2009. 油茶低产低效的内外影响因子调查. 林业科技开发, 23(5): 26-31.
(Li Z J, Zeng Y R, Dai W S. 2009. Studies on internal and external factors which related with low yield and poor benefit in Camellia oleifera. China Forestry Science and Technology, 23(5): 26-31[in Chinese]).(1)
[16] 廖 婷, 袁德义, 高 超, 等. 2014. 油茶授粉受精及早期胚胎发育. 林业科学, 50(2): 50-55.
(Liao T, Yuan D Y, Gao C, et al. 2014. Pollination, fertilization and early embryonic development of Camellia oleifera. Scientia Silvae Sinicae, 50(2): 50-55[in Chinese]).(2)
[17] 林国锋, 陈世品, 刘玉宝, 等. 2010. 油茶良种选育研究进展. 亚热带农业研究, 6(2): 81 - 85.
(Lin G F, Chen S P, Liu Y B, et al. 2010. Review on selection and breeding of fine varieties of Camellia oleifera. Subtropical Agriculture Research, 6(2): 81-85[in Chinese]).(2)
[18] 林少韩, 李桂梅. 1991. 油茶低产林改造工程的技术策略与实施方法. 林业科学研究, 4(4): 353-359.
(Lin S H, Li G M. 1991. The technical tactics and measures of the project for transforming the low-yielding plantation of oil-tea Camellia. Forest Research, 4(4): 353-359[in Chinese]).(1)
[19] 林少韩, 徐乃焕. 1981. 油茶花期生态及结实力研究. 林业科学, 17(2): 113-122. (Ling S H, Xu N H. 1981. A study on the ecological factor of blossoming period and fruiting ability of Camellia oleifera. Scientia Silvae Sinicae, 17(2): 113-122.[in Chinese])(2)
[20] 潘华平, 刘君昂, 周国英. 2011. 油茶树体结构与产量关系的研究. 江西农业大学学报, 33(1): 58-62.
(Pan H P, Liu J A, Zhou G Y. 2011. Study on relationship between the tree composition and yield of Camellia oleifera. Acta Agriculturae Universitatis Jiangxiensis, 33(1): 58-62[in Chinese]).(1)
[21] 申 巍, 杨水平, 姚小华, 等. 2008. 施肥对油茶生长和结实特性的影响. 林业科学研究, 21(2): 239-242.
(Shen W, Yang S P, Yao X H, et al. 2008. Studies on the effects of fertilization on growth and fruiting of oil-tea Camellia. Forest Research, 21(2): 239-242[in Chinese]).(1)
[22] 谭晓风, 袁德义, 袁 军, 等. 2011. 大果油茶良种'华硕'. 林业科学, 47(12): 184.
(Tan X F, Yuan D Y, Yuan J, et al. 2011. An elite variety: Camellia oleifera 'Huashuo'. Scientia Silvae Sinicae, 47(12): 184[in Chinese]).(1)
[23] 谭晓风, 袁德义, 邹 锋, 等. 2012. 油茶良种'华鑫'. 林业科学, 48(3): 170.
(Tan X F, Yuan D Y, Zou F, et al. 2012. An elite variety of Oiltea: Camellia oleifera 'Huaxin'. Scientia Silvae Sinicae, 48(3): 170[in Chinese]).(1)
[24] 王湘南, 陈永忠, 彭邵锋, 等. 2008. 5个油茶良种. 林业科学, 44(4): 173-174.
(Wang X N, Chen Y Z, Peng S F, et al. 2008. Five elite varieties of Camellia oleifera. Scientia Silvae Sinicae, 44(4): 173-174[in Chinese]).(1)
[25] 袁德义, 谭晓风, 邹 锋, 等. 2012. 油茶良种'华金'. 林业科学, 48(2): 187.
(Yuan D Y, Tan X F, Zou F, et al. 2012. An elite variety: Camellia oleifera 'Huajin'. Scientia Silvae Sinicae, 48(2): 187[in Chinese]).(1)
[26] 袁德义, 邹 锋, 谭晓风, 等. 2011. 油茶花芽分化及雌雄配子体发育的研究. 中南林业科技大学学报, 31(3): 65-70.
(Yuan D Y, Zou F, Tan X F, et al. 2011. Flower bud differentiation and development of male and female gametophytes in Camellia oleifera. Journal of Central South University of Forestry and Technology, 31(3): 65-70[in Chinese]).(1)
[27] 曾燕如, 黎章矩, 戴文圣. 2009. 油茶开花习性的观察研究. 浙江林学院学报, 26(6): 802- 809. (Zeng Y R, Li Z J, Dai W S. 2009. Flowering habits in Camellia oleifera. Journal of Zhejiang Forestry College, 26(6): 802-809.[in Chinese])(1)
[28] 曾燕如, 黎章矩. 2010. 油茶花期气候对花后坐果的影响. 浙江林学院学报, 27(3): 323-328.
(Zeng Y R, Li Z J. 2010. Effects of the climate during flowering period on post-flowering fruit setting in Camellia oleifera. Journal of Zhejiang Forestry College, 27(3): 323-328[in Chinese]).(1)
[29] 周良骝, 任立中, 陈佩聪, 等. 1991. 油茶胚胎发育及落花落果的研究. 安徽农学院学报, 18(3): 238-241.
(Zhou L L, Ren L Z, Chen P C, et al. 1991. Premature drop, shedding and embryonic development of petals of the oil-tea Camellia. Journal of Anhui Agricultural College, 18(3): 238-241[in Chinese]).(1)
[30] 周政贤. 1963. 油茶生态习性、根系发育及垦复效果的调查研究. 林业科学, 8(4): 336-346.
(Zhou Z X. 1963. Investigation of ecological habit, root development and reclamation effect on Camellia oleifera. Scientia Silvae Sinicae, 8(4): 336-346[in Chinese]).(1)
[31] 庄瑞林. 2008. 中国油茶. 北京: 中国林业出版社.
(Zhuang R L. 2008. Camellia oleifera in China. Beijing: China Forestry Publishing House.[in Chinese])(1)
[32] Bittencourt Jr N S, Semir J. 2005. Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae). International Journal of Plant Sciences, 166(3): 493-506.(3)
[33] Brewbaker J L. 1957. Pollen cytology and self-incompatibility systems in plants. Journal of Heredity, 48(6): 271-277.(1)
[34] Charlesworth B, Charlesworth D. 1999. The genetic basis of inbreeding depression. Genetical Research, 74(3): 329-340.(1)
[35] Chen X, Hao S, Wang L, et al. 2012. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia, 67(2): 347-351.(3)
[36] De Nettancourt D. 2001. Incompatibility and incongruity in wild and cultivated plants. Berlin: Springer Verlag, 3-72.(1)
[37] Franklin-Tong V E. 2008. Self-incompatibility in flowering. New York: Springer Verlag, 73-91.(1)
[38] Ge L L, Tian H Q, Russell S D. 2007. Calcium function and distribution during fertilization in angiosperms. American Journal of Botany, 94(6): 1046-1060.(1)
[39] Kapil R N, Sethi S B. 1963. Development of male and female gametophytes in Camellia sinensis (L.) O. Kuntze. Proc Natl Inst Sci India B, 29: 574-597.(1)
[40] Kenrick J, Kaul V, Williams E G. 1986. Self-incompatibility in Acacia retinodes: site of pollen-tube arrest is the nucellus. Planta, 169(2): 245-250.(1)
[41] Kho Y O, Baer J. 1968. Observing pollen tubes by means of fluorescence. Euphytica, 17(2): 298-302.(1)
[42] Lipow S R, Wyatt R. 2000. Single gene control of postzygotic self-incompatibility in poke milkweed, Asclepias exaltata L. Genetics, 154(2): 893-907.(1)
[43] Sage T L, Price M V, Waser N M. 2006. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. American Journal of Botany, 93(2): 254-262.(3)
[44] Sage T L, Strumas F, Cole W W, et al. 1999. Differential ovule development following self and crossing-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). American Journal of Botany, 86(6): 855-870.(3)
[45] Seavey S R, Bawa K S. 1986. Late-acting self-incompatibility in angiosperms. The Botanical Review, 52(2): 195-219.(1)
[46] Silva N F, Goring D R. 2001. Mechanisms of self-incompatibility in flowering plants. Cell and Molecular Life Sciences, 58(14): 1988-2007. (1)
[47] Taroda N, Gibbs P E. 1982. Floral biology and breeding system of Sterculia chicha St. Hil.
(Sterculiaceae). New phytologist, 90(4): 735-743.(1)
[48] Tsou C H. 1997. Embryology of the Theaceae-anther and ovule development of Camellia, Franklinia, and Schima. American Journal of botany, 84(3): 369-381.(1)
[49] Vaughton G, Ramsey M, Johnson S D. 2010. Pollination and late-acting self-incompatibility in Cyrtanthus breviflorus (Amaryllidaceae): implications for seed production. Annals of Botany, 106(4): 547-555.(1)
[50] Wachira F N, Kamunya S K. 2005. Pseudo-self-incompatibility in some tea clones (Camellia sinensis (L.) O. Kuntze). Journal of Horticultural Science and Biotechnology, 80(6): 716-720.(1)
[51] Weterings K, Russell S D. 2004. Experimental analysis of the fertilization process. The Plant Cell, 16: 107-118.(1)
[52] Ye W J, Qin Y H, Ye Z X, et al. 2009. Seedless mechanism of a new mandarin cultivar 'Wuzishatangju' (Citrus reticulata Blanco). Plant Science, 177(1): 19-27.(1)
[53] Zou F, Yuan D Y, Duan J H, et al. 2013a. A study of microsporogenesis and male gametogenesis in Camellia grijsii Hance. Advance Journal of Food Science and Technology, 5(12): 1590-1595.(1)
[54] Zou F, Yuan D Y, Tan X F, et al. 2013b. Megasporogensis and female gametophyte development of Camellia grijsii Hance. Journal of Chemical and Pharmaceutical Research, 5(11): 484-488.(1)