林业科学  2015, Vol. 51 Issue (2): 154-162   PDF    
DOI: 10.11707/j.1001-7488.20150219
0

文章信息

尚帅斌, 郭俊杰, 王春胜, 赵志刚, 曾杰
Shang Shuaibin, Guo Junjie, Wang Chunsheng, Zhao Zhigang, Zeng Jie
海南岛青梅天然居群表型变异
Phenotypic Variations in Natural Populations of Vatica mangachapoi in Hainan, China
林业科学, 2015, 51(2): 154-162
Scientia Silvae Sinicae, 2015, 51(2): 154-162.
DOI: 10.11707/j.1001-7488.20150219

文章历史

收稿日期:2014-09-26
修回日期:2014-11-26

作者相关文章

尚帅斌
郭俊杰
王春胜
赵志刚
曾杰

海南岛青梅天然居群表型变异
尚帅斌, 郭俊杰, 王春胜, 赵志刚, 曾杰    
中国林业科学研究院热带林业研究所 广州 510520
摘要:【目的】 通过居群取样以及果实与叶片性状测定,揭示青梅居群间和居群内的表型变异规律,为其天然林保护与经营以及种质资源收集、保存与利用提供科学依据,亦为海南岛青梅种及变种的修订提供基础数据。【方法】 在全面调查海南岛青梅天然分布区的基础上,对9个天然居群133个单株的17个果实与叶片形态性状进行研究,运用巢式方差分析、多重比较、相关分析以及聚类分析等方法,探讨青梅天然居群表型多样性水平及其与地理、环境因子的相关性。【结果】 巢式方差分析结果表明,17个果实和叶片形态性状在青梅居群间和居群内均存在极显著差异 (P <0.01),说明这些性状在居群间与居群内均存在丰富的变异; 居群内的变异 (50.57%) 远大于居群间 (11.38%),居群平均表型分化系数为18.31%;各性状的分化系数变化幅度为4.52% (叶片侧脉数) ~40.31% (果实小萼片长宽比)。相关分析表明,叶片长与叶柄长、叶片长宽比与叶片最宽处至基部的距离呈显著 (P <0.05)或极显著(P <0.01)正相关,果实大萼片长与叶片侧脉数、叶柄长显著负相关; 青梅果实和叶片形态性状与年均气温、年降水量相关不显著,叶片侧脉数、叶柄长与海拔呈显著正相关,而果实大萼片长与海拔呈显著负相关, 叶片侧脉数、叶片长与1月平均气温呈显著负相关。利用居群间欧式距离进行UPGMA聚类分析,将9个青梅天然居群分为3类。【结论】 应加强现存青梅天然林及其生境的保护,对于变异丰富的卡法岭等居群以及具特殊土壤生境的石梅湾居群应予以重点保护; 居群内变异是海南岛青梅居群变异的主要来源,开展种质资源收集、迁地保存与遗传改良时,可适当增加居群内个体数,减少居群取样数; 由于海南岛各青梅居群间形态性状变异幅度大,且为连续变异,本研究不支持以往发表的分布于海南岛的青梅新种和变种。
关键词青梅    天然居群    表型多样性    海南岛    
Phenotypic Variations in Natural Populations of Vatica mangachapoi in Hainan, China
Shang Shuaibin, Guo Junjie, Wang Chunsheng, Zhao Zhigang, Zeng Jie    
Research Institute of Tropical Forestry, CAF Guangzhou 510520
Abstract: [Objective] Vatica mangachapoi is an endangered tree species distributed naturally in Hainan Island, China. Its population decreased rapidly along with heavy loss of natural forest resources and habitat fragmentation due to over-harvesting and devastating forests for arable land. Efficient strategies are urgently needed for conserving natural forest resources of this species. Moreover, the taxonomy of this species is in controversy, taxonomic status of some varieties still need to be proved. Properties of fruits and leaves were measured for trees sampled from different populations to reveal phenotypic variations within and among natural populations. The study would provide scientific evidences for conservation and management of natural forests, and collection, conservation and utilization of genetic resources of the species, and provide basic data for revision of the taxonomy of species and its varieties. [Method] Based on surveys of whole range of natural distribution of V. mangachapoi in Hainan Island, 17 traits of fruit and leaf morphology were investigated for 133 individuals in 9 natural populations, and level of phenotypic diversity in its natural populations was assessed, and relationship between the diversity level and geographic and environmental factors was estimated using nest design, multiple comparison test, correlation analysis and cluster analysis.[Result] The variance analysis showed significant differences in the 17 morphological traits of fruit and leaf both within and among populations, indicating abundant variation among and within populations. The within-population variation (50.57%) was far greater than the among-population variation (11.38%); and the average phenotypic population differentiation coefficient was 18.31% with a range from 4.52% for the number of lateral leaf veins to 40.31% for the length/width ratio of the short sepal. Correlation analysis revealed that there were significant positive correlations between leaf length and petiole length, leaf length/width ratio and distance from the widest position to leaf base, while the length of long fruit sepals were in significantly negative correlation with the number of lateral leaf veins and petiole length. No significant correlation was found between fruit and leaf traits and mean annual air temperature and precipitation. While there were significantly negative correlation between number of lateral vein, leaf length and mean air temperature in January, and the number of lateral veins and petiole length increased remarkably with the increment of elevation. The 9 natural populations were divided into 3 groups by UPGMA cluster analysis based on Euclidean distance calculated from phenotypic traits.[Conclusion] It is important to conserve the remaining natural forests and habitats of V. mangachapoi, and in particular, more attention need to be paid to conservation of populations with abundant variations such as Kafaling (Population 4) and populations with special soil conditions such as Shimeiwan (Population 7). Within-population variation was the main source of variation, more individual trees and fewer populations should be used for genetic improvement and conservation of genetic resources. Furthermore, the findings of the present study do not support the new species and varieties in the Hainan Island which were published previously since morphological variation of fruit and leaf varied greatly and continuously, and the variation range were of considerable overlap among individuals within population and among all populations.
Key words: Vatica mangachapoi    natural population    phenotypic diversity    Hainan Island    

表型是生物遗传变异的表征,植物居群的表型特征与其生境密切相关,其多样性水平是遗传多样性与环境异质性的综合体现(臧润国等,2009)。表型多样性在适应和进化上具有重要意义,是生态学与遗传学研究的重要内容(李斌等,2002; Pigliucci et al.,2006; Mizianty et al.,2007)。利用表型性状研究居群遗传多样性具有简便、快捷、费用低等优点。学者们进行表型多样性研究,多集中于探索物种变异模式、变异来源以及变异与环境因子的关系(Hausmann et al.,2001; Sanou et al.,2006)。叶片形态与植物生理生化特征以及繁殖特性密切相关(Chechowitz et al.,1990; Weight et al.,2008),作为一种可量化的特征被广泛用于植物分类(Duminil et al.,2009; Weight et al.,2008)、表型变异(曾杰等,2005; 辜云杰等,2009; Sisó et al.,2001; Cardillo et al.,2006; Li et al.,2006)研究。果实和种子形态亦多应用于植物分类与表型多样性研究中,植物种实性状主要受遗传因素控制,亦为适应各种环境而产生分化(李伟等,2013),种实表型性状影响种子萌发和幼苗定居,进而影响居群的分布格局(Simons et al.,2006; Leverett et al.,2014; Parciak,2002),异质生境中的种实形态变异一直是生态学与进化生物学研究的内容之一(Venable et al.,1985)。

青梅(Vatica mangachapoi)又名青皮,为龙脑香科(Dipterocarpaceae)青梅属(Vatica)植物,是典型的热带雨林树种,其高可达30 m以上,胸径达1.2 m。青梅天然分布于越南、泰国、菲律宾、印度尼西亚,我国仅海南岛有分布。青梅一般生长于海拔800 m以下,对土壤具有较强的适应性,从滨海沙地到低山、中高山的山地砖红壤性土、砖黄壤土均有分布(许涵等,2007)。青梅心材质地坚硬,结构细致,极耐腐蚀,为海南五大珍贵硬材之一,也是国际热带木材市场上的重要商品材之一(Appanah et al.,1998);其叶片、茎中含有大量可利用的次生代谢物,可用于香料、药物开发(Qin et al.,2011)。

长期以来过度采伐利用、毁林开荒,特别是随着橡胶树(Hevea brasiliensis)、荔枝(Litchi chinensis)等热作园、果园的兴起,盲目开垦、乱砍滥伐等导致青梅天然居群生境破碎化,天然林资源丧失严重,居群规模急剧减小(李意德,1995),青梅现已被列为国家二级重点保护植物,加强青梅天然林保护,制定有效的资源保护策略迫在眉睫。而制定策略的前提是了解其居群规模和遗传背景(Mamo et al.,2006),根据其现存居群大小与遗传多样性水平进行针对性的科学保护(Lee et al.,20062013)。有关青梅遗传多样性研究,目前仅见黄久香等(2008)用AFLP标记分析海南岛7个居群遗传多样性的报道。开展青梅表型多样性研究既能初步揭示其居群遗传多样性水平,亦能探究其生态适应性,一方面可为青梅现有居群保护提供理论依据;另一方面,可为其遗传改良奠定基础,有助于青梅人工林的规模发展。再者,有关青梅的分类学问题亦存在争论,一些变种,如万宁青梅(V. mangachapoi ssp. hainanensis var. wanningensis)等是否成立尚待从居群水平上证实。本研究在全面调查海南岛青梅天然分布区的基础上,以9个青梅天然居群为研究对象,系统测定了果实、叶片的17个表型性状,旨在揭示其表型性状在居群间和居群内个体间的变异规律,为其天然林保护与经营以及种质资源收集利用提供科学依据,亦为海南岛青梅种及变种的修订提供基础数据。

1 材料与方法 1.1 居群取样

由于龙脑香科树种结实大小年现象严重,加之青梅果实成熟期间常发生台风危害,大规模的青梅采种较为困难。2011年9月至2013年10月,在对海南岛青梅天然林全面调查的基础上,开展青梅果实以及标本的采集工作,其中2011年9月完成乌烈居群的采样工作,2013年7—10月采集了霸王岭、尖峰岭、甘什岭、卡法岭、三亚热带天堂、五指山什顺村、石梅湾、陀烈8个居群的标本和果实,共计9个居群,133个单株。每个居群内取样植株间距在100 m以上。对于每个采样植株,随机采集果实,于其树冠中上部南向采集枝条制作标本,用全球定位系统(GPS) 测定其经纬度和海拔。居群的地理位置、立地条件以及取样情况见表 1

表 1 青梅9个天然居群的地理位置与环境因子 Tab.1 Geographical location and environmental factors of the 9 natural populations of Vatica mangachapoi
1.2 形态指标测定

龙脑香科树种主要依据叶片、果实萼片、花粉粒进行分类(Maguire et al.,1977; and Dayanan et al.,1999),故选取叶片与果实性状进行表型多样性分析。果实性状包括果实高、果实宽、大萼片长和宽以及小萼片长和宽,叶片性状包括侧脉数、叶片长和宽、叶柄长、叶基至最宽处距离(以下简称“基宽距”)、叶基角。因性状间比值与直接测定的形态性状相比,可能提供额外的变异信息(Frampton et al.,1990),故计算果实高宽比、大萼片长宽比、小萼片长宽比、叶片长宽比、叶片长宽乘积等指标,共计17个指标。用游标卡尺测量叶片长和宽、叶柄长、果实宽和高以及大小萼片长和宽等指标,测量精度为0.01 mm,量角器测量叶基角,精度为0.1°。每个植株随机测量15个成熟叶片、30粒果实。

1.3 统计分析

应用巢式设计模型对青梅17个表型性状的调查数据进行方差分析,揭示青梅居群的表型变异特征。方差分析之前对数据做方差齐性检验,对方差不齐性的数据进行反余切转换。线性模型为Yijk=μ+Pi+Ti(j)+e(ij)k。式中:Yijk为第i居群第j个植株第k个观测值;μ为总均值;Pi 为第i个居群的效应值(固定); Ti(j)为第i个居群第j个植株的效应值(随机);e(ij)k为试验误差。依据公式Vst=δt/s2/(δt/s2 +δs2)计算居群间表型分化系数(Vst)。式中:δt/s2是居群间方差值;δs2是居群内方差值(葛颂等,1988)。应用相关分析揭示各表型性状间及其与环境因子间的关系,相关系数采用Pearson系数(因经度和纬度的跨度较小,未纳入相关分析)。上述统计分析在SPSS 18.0软件上进行。

利用各表型性状的调查数据计算居群间的欧氏距离(Euclidean distance),应用非加权配对算数平均法(un-weighted pair-group method using arithmetic averages,UPGMA)进行系统聚类分析,并运用相关分析揭示地理距离与欧氏距离间的相关性,这些统计分析运用NTSYS PC2.11软件进行。

2 结果与分析 2.1 青梅居群间和居群内的表型变异特征

巢式方差分析结果(表 2)表明,17个果实与叶片性状在青梅居群间和居群内均存在极显著差异(P < 0.01),说明青梅在居群间与居群内变异丰富。9个青梅居群17个表型性状的平均值、标准差和多重比较结果见表 3。从表 3可以看出,果实大(小)萼片最长、最宽,叶基角最大,叶柄最短的是石梅湾居群;果实最宽,大萼片长宽比最大,果实高宽比最小的是乌烈居群;果高和宽最小的为尖峰岭居群;叶片最长、最宽,叶柄长、基宽距最大,叶片侧脉数最多的是卡法岭居群;三亚热带天堂居群叶片长、基宽距、叶片长宽比、叶片长宽积最小;侧脉数最少的为石梅湾居群和三亚热带天堂居群;叶片宽度最小,果高最大的为乌烈和霸王岭居群。尽管各性状在居群间差异明显,但是大多表现为连续变异。

表 2 海南岛9个青梅居群17个表型性状的巢式方差分析 Tab.2 Variance analysis of 17 phenotypic traits among and within 9 Vatica mangachapoi populations on the Hainan Island, China
表 3 海南岛9个青梅居群17个表型性状的变异状况(平均值±标准偏差) Tab.3 Variations of 17 phenotypic traits in 9 Vatica mangachapoi populations on the Hainan Island (mean±SD)
2.2 青梅居群间表型分化

17个表型性状在青梅居群间与居群内的方差分量以及各性状的分化系数见表 4。由表 4可知,各性状在居群内的方差分量远远大于居群间,各性状在居群内和居群间方差分量比值为1.48~21.10,其平均值为6.25。居群间和居群内的方差分量百分比分别为11.38%和50.57%。17个表型性状的分化系数平均为18.31%,其变化幅度为4.52%~40.31%,以叶片侧脉数的分化系数为最大,小萼片长宽比的为最小。果实大萼片长、宽的分化系数约为大萼片长宽比的2倍,小萼片长、宽分化系数约为小萼片长宽比的4倍,而叶片长、宽的分化系数约为叶片长宽比的2/3与1/2,说明大、小萼片的形状较叶片稳定。

表 4 海南岛青梅表型变异在居群间和居群内的分布 Tab.4 Distribution of phenotypic variances among and within Vatica mangachapoi populations on the Hainan Island, China
2.3 青梅居群表型性状间及其与环境因子的相关性

表 5显示了青梅居群17个表型性状间的相关性。由表 5可知,叶片侧脉数与叶片长、叶柄长、基宽距以及叶片长宽比呈显著或极显著正相关,与叶基角呈显著负相关;叶柄长还与叶片长、基宽距及叶片长宽比呈显著正相关。果实大(小)萼片长与宽大多显著正相关,仅大萼片长与小萼片宽相关不显著。果实与叶片性状间,仅大萼片长与侧脉数、叶柄长相关显著。

表 5 海南岛青梅居群17个表型性状间的相关性 Tab.5 Correlation between 17 phenotypic traits in Vatica mangachapoi populations on the Hainan Island, China

青梅17个表型性状与居群环境因子的相关分析结果(表 6)表明:叶片侧脉数与海拔呈极显著正相关,与1月平均气温呈显著负相关;叶片长与1月平均气温也呈显著负相关关系;叶柄长与海拔呈显著正相关;大萼片长则与海拔呈显著负相关;果实宽与7月平均气温呈显著正相关;年均气温、年降水量与青梅表型性状相关不显著。

表 6 海南岛青梅居群表型性状与环境因子的相关性 Tab.6 Correlation between geo-ecological factors and phenotypic traits of Vatica mangachapoi populations on the Hainan Island, China
2.4 青梅居群分类

为了研究青梅居群间的亲缘关系,基于青梅17个表型性状计算9个居群间的欧氏距离,利用UPGMA法进行聚类,得到居群树状图(图 1)。可将9个居群分为3类:霸王岭、乌烈、甘什岭、卡法岭聚为一类;尖峰岭与五指山聚为一类;三亚热带天堂、陀烈与石梅湾聚为一类。地理上相邻的居群并未完全聚在一起。进一步对9个居群间的地理距离与欧氏距离进行相关分析发现,二者之间相关性不显著(R=0.302 2,P=0.954 1)。

图 1 海南岛9个青梅天然居群的聚类 Fig. 1 Dendrogram of 9 natural Vatica mangachapoi populations on the Hainan Island, China using UPGMA clustering method for Euclidean distance derived from 17 phenotypic traits 居群编号见表1。See Tab.1 for codes of populations.
3 讨论 3.1 青梅天然居群表型变异规律

本研究通过对海南岛9个青梅天然居群的17个表型性状进行巢式方差分析发现,海南岛青梅居群间以及居群内个体间存在丰富的表型变异,其表型分化系数为18.31%,换言之,居群内变异占81.69%。黄久香等(2008)应用AFLP标记研究了海南岛7个青梅居群的遗传多样性,发现其具有较高的遗传多样性(多态位点百分率为79.45%),且居群间的遗传变异占19.8%。本研究结果与其一致。这些研究均说明居群内变异是海南岛青梅居群变异的主要来源。

有关海南岛的青梅分类,王兰州(1985)根据大小萼片长和宽、叶柄长等性状将海南岛的青梅确定为新种——海南青梅(V. hainanensis),并进一步根据大萼片长和宽以及叶片长、宽、侧脉数细分为2个新变种——腺瓣青梅(V. hainanensis var. gl and ipetala)和细叶青梅(V. hainanensis var. parvifolia);符国瑷等(2008)则依据叶片侧脉数、大萼片长确定了一新变种——万宁青梅。本研究居群采样基本上涵盖了上述新种、新变种的标本采集地点,调查结果表明,上述形态性状变异幅度大,且为连续变异,即海南岛青梅居群间以及各居群内个体间的差异涵盖了上述新种或新变种的变异幅度,亦未超出青梅鉴别特征的性状描述(Blanco,1837)。这些分类学研究仅依据少量标本,缺乏大范围的居群取样,其分类学结果难以被大多数分类学家所接受(许涵等,2007),因而海南青梅及其2个变种腺瓣青梅和细叶青梅未收入“Flora of China”(Li et al.,2007)。本研究对果实和叶片形态性状的变异分析结果亦不支持上述所有新种和新变种,并提出了直接证据。

3.2 青梅居群间表型性状与生态因子的关系

青梅表型性状相关分析结果表明,青梅叶柄长度与叶片长、叶片长宽比呈显著正相关,随叶片长度增大,叶片长宽比增大,有利于植物获得更多的光能,而增大的叶片需要更长的叶柄以减少个体内部对光能的相互遮挡,从而促进个体内部对光能的高效利用(Takenaka,1994)。青梅表型性状与环境因子间的相关分析显示,年降水量对青梅果实、叶片形态性状的变异影响不显著,而1月份平均气温对叶片侧脉数和叶片长影响显著,10月份至翌年6月份为海南岛旱季,降水较少,叶片侧脉数和叶片长随着1月份平均气温增高而减小以降低植物蒸腾耗水,是对季节性干旱的适应;海拔显著影响大萼片长、叶片侧脉数和叶柄长,随海拔升高,大萼片变短,叶片侧脉数、叶柄长增大,青梅果实萼片大小与果实散布距离有关,海拔越高往往风速越大,云雾及雨日增多,萼片短有利于青梅幼苗定居乃至物种生存(Suzuki et al.,1996),而叶柄长增大,有助于减少青梅个体内部叶片对光能的相互遮挡,提高其光能利用,亦是对海拔升高的一种适应。

3.3 青梅居群保护建议

青梅作为海南岛乡土珍贵树种,颇具发展潜力和应用前景,然而当前青梅居群天然林资源急剧减少。为了更好地保护青梅现有居群,实现青梅资源的可持续利用,提出如下建议:1)如上所述,青梅的遗传变异有近4/5存在于居群内,因此,开展以青梅迁地保护或遗传改良为目的的种质资源收集时,可适当增加居群内的个体数,减少居群取样数。2)尽管居群内变异远大于居群间变异,但居群间变异反映居群对各种环境的适应性(庞广昌等,1995),因此,应加强现存青梅天然林保护,禁止采伐现有天然林木,同时保护其生境,对于变异丰富的卡法岭等居群应重点保护,考虑到石梅湾青梅居群的土壤特殊性,对其亦应重点保护;五指山什顺村居群和陀烈居群,居群面积较小,人为活动频繁,生境遭受严重破坏,进行青梅现有居群规模保护的同时,应结合进行迁地保护,收集其种子育苗,建立种质资源收集圃,而当自然生境的条件合适时,再将其后代回归自然。

参考文献(References)
[1] 符国瑷, 杨永康. 2008. 海南岛青皮属 (龙脑香科)一新变种和鱼骨木属 (茜草科)一新组合. 植物研究, 28(3): 259-260.
(Fu G A, Yang Y K. 2008. A new variety of Vatica L. (Dipterocarpaceae) and a new combination of Canthium (Rubiaceae) from Hainan Island. Bulletin of Botanical Research, 28 (3): 259-260.[in Chinese])(1)
[2] 葛颂, 王明庥, 陈岳武. 1988. 用同工酶研究马尾松群体的遗传结构. 林业科学, 24(4): 399-409.
(Ge S, Wang M X, Chen Y W. 1988. An analysis of population genetic structure of masson pine by isozyme technique. Scientia Silvae Sinicae, 24(4): 399-409[in Chinese]).(1)
[3] 辜云杰, 罗建勋, 吴远伟, 等. 2009. 川西云杉天然种群表型多样性. 植物生态学报, 33(2): 291-301.
(Gu Y J, Luo J X, Wu Y W, et al. 2009. Phenotypic diversity in natural populations of Picea balfouriana in Sichuan, China. Chinese Journal of Plant Ecology, 33(2): 291-301[in Chinese]).(1)
[4] 黄久香, 黄妃本, 许涵, 等. 2008. 海南岛青梅 AFLP 标记的遗传多样性. 林业科学, 44(5): 46-52.
(Huang J X, Huang F B, Xu H, et al. 2008. Genetic diversity of Vatica mangachapoi in buke revealed by AFLP. Scientia Silvae Sinicae, 44(5): 46-52[in Chinese]).(2)
[5] 李斌, 顾万春, 卢宝明. 2002. 白皮松天然群体种实性状表型多样性研究. 生物多样性, 10(2): 181-188.
(Li B, Gu W C, Lu B M. 2002. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana. Biodiversity Science, 10(2): 181-188[in Chinese]).(1)
[6] 李伟, 林富荣, 郑勇奇, 等. 2013. 皂荚南方天然群体种实表型多样性. 植物生态学报, 37(1): 61-69.
(Li W, Lin F R, Zheng Y Q, et al. 2013. Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in Southern China. Chinese Journal of Plant Ecology, 37(1): 61-69[in Chinese]).(1)
[7] 李意德. 1995. 海南岛热带森林的变迁及生物多样性的保护对策. 林业科学研究, 8(4): 455-461.
(Li Y D. 1995. Biodiversity of tropical forest and its protection strategies in Hainan Island, China. Forest Research, 8(4): 455-461[in Chinese]).(1)
[8] 庞广昌, 姜冬梅. 1995. 群体遗传多样性和数据分析. 林业科学, 31(6): 543-550.
(Pang G C, Jiang D M. 1995. Population genetic diversity and data analysis. Scientia Silvae Sinicae, 31(6): 543-550[in Chinese]).(1)
[9] 王兰州. 1985. 广东海南岛青皮原植物的研究. 中山大学学报: 自然科学版, (3): 94-97.
(Wang L Z. 1985. A study on Vatica plants growing in Hainan of Guangdong. Acta Scientiarum Naturalium Universitatis Sunyatseni, (3): 94-97[in Chinese]).(1)
[10] 许涵, 李意德, 骆土寿, 等. 2007. 海南岛国家重点保护植物青皮 (Vatica mangachapoi) 研究综述. 热带林业, 35(2): 8-11.
(Xu H, Li Y D, Luo T S, et al. 2007. The research review of national key protected plant—Vatica mangachapoi in Hainan Island, China. Tropical Forestry, 35(2): 8-11.[in Chinese])(2)
[11] 臧润国, 刘贵峰, 巴哈尔古丽·阿尤甫, 等. 2009. 天山云杉球果大小性状的地理变异规律. 林业科学, 45(2): 27-32.
(Zang R G, Liu G F, Bahaerguli·A, et al. 2009. Geograhic variation of cone size of Picea schrenkiana var. tianschanica in the Tianshan Mountains of Xinjiang. Scientia Silvae Sinicae, 45(2): 27-32[in Chinese]).(1)
[12] 曾杰, 郑海水, 甘四明, 等. 2005. 广西西南桦天然居群的表型变异. 林业科学, 41(2): 59-65.
(Zeng J, Zheng H S, Gan S M, et al. 2005. Phenotypic variation in natural populations of Betula alnoides in Guangxi, China. Scientia Silvae Sinicae, 41(2): 59-65[in Chinese]).(1)
[13] Appanah S, Turnbull J M. 1998. A review of dipterocarps: Taxonomy, ecology and silviculture. Bogor, Indonesia: Center for International Forestry Research, 195.(1)
[14] Blanco M. 1837. Flora de Filipinas: Segun el sistema sexual de Linneo. ed. 1. Miguel Sanchez, Manila: Candido Lopez, The Philippines, 401.(1)
[15] Cardillo E, Bernal C. 2006. Morphological response and growth of cork oak (Quercus suber L.) seedlings at different shade levels. Forest Ecology and Management, 222(1): 296-301.(1)
[16] Chechowitz N, Chappell D M, Guttman S I, et al. 1990. Morphological, electrophoretic, and ecological analysis of Quercus macrocarpa populations in the Black Hills of South Dakota and Wyoming. Canadian Journal of Botany, 68(10): 2185-2194.(1)
[17] Dayanandan S, Ashton P S, Williams S M, et al. 1999. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. American Journal of Botany, 86(8): 1182-1190.(1)
[18] Duminil J, Di Michele M. 2009. Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosystems, 143(3): 528-542. (1)
[19] Frampton C, Ward J. 1990. The use of ratio variables in systematics. Taxon, 39(4): 586-592.(1)
[20] Hausmann S, Lotter A F. 2001. Morphological variation within the diatom taxon Cyclotella comensis and its importance for quantitative temperature reconstructions. Freshwater Biology, 46(10): 1323-1333.(1)
[21] Lee S L, Chua L S, Ng K K, et al. 2013. Conservation management of rare and predominantly selfing tropical trees: an example using Hopea bilitonensis (Dipterocarpaceae). Biodiversity and Conservation, 22(13/14): 2989-3006.(1)
[22] Lee S L, Ng K K, Saw L G, et al. 2006. Linking the gaps between conservation research and conservation management of rare dipterocarps: A case study of Shorea lumutensis. Biological Conservation, 131(1): 72-92.(1)
[23] Leverett L D, Jolls C L. 2014. Cryptic seed heteromorphism in Packera tomentosa (Asteraceae): differences in mass and germination. Plant Species Biology, 29(2): 169-180.(1)
[24] Li C, Zhang X, Liu X, et al. 2006. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40(1): 5-13(1)
[25] Li X W, Li J, Ashton P S. 2007. Dipterocarpaceae//Wu Z Y, Raven P H. Flora of China, Vol. 13: Alangiaceae through Violaceae. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 48-54.(1)
[26] Maguire B P C, Ashton P S, Giannasi D E, et al. 1977. Pakaramoideae, Dipterocarpaceae of the western hemisphere. Taxon, 26: 341-385.(1)
[27] Mamo N, Mihretu M, Fekadu M, et al. 2006. Variation in seed and germination characteristics among Juniperus procera populations in Ethiopia. Forest Ecology and Management, 225(1): 320-327.(1)
[28] Mizianty M, Frey L, Bieniek W, et al. 2007. Variability and structure of natural populations of Hordelymus europaeus (L.) Jess. ex Harz and Leymus arenarius (L.) Hochst. as revealed by morphology and DNA markers. Plant Systematics and Evolution, 269(1/2): 15-28.(1)
[29] Parciak W. 2002. Seed size, number, and habitat of a fleshy-fruited plant: consequences for seedling establishment. Ecology, 83(3): 794-808.(1)
[30] Pigliucci M, Murren C J, Schlichting C D. 2006. Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209(12): 2362-2367.(1)
[31] Qin Y H, Zhang J, Cui J T, et al. 2011. Oligostilbenes from Vatica mangachapoi with xanthine oxidase and acetylcholinesterase inhibitory activities. RSC Advances, 1(1): 135-141.(1)
[32] Sanou H, Picard N, Lovett P, et al. 2006. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa CF Gaertn., in Mali. Genetic Resources and Crop Evolution, 53(1): 145-161.(1)
[33] Simons A M, Johnston M O. 2006. Environmental and genetic sources of diversification in the timing of seed germination: implications for the evolution of bet hedging. Evolution, 60(11): 2280-2292.(1)
[34] Sisó S, Camarero J, Gil-Pelegrín E. 2001. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees, 15(6): 341-345.(1)
[35] Suzuki E, Ashton P S. 1996. Sepal and nut size ratio of fruits of Asian Dipterocarpaceae and its implications for dispersal. Journal of Tropical Ecology, 12(6): 853-870.(1)
[36] Takenaka A. 1994. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9(2): 109-114.(1)
[37] Venable D, Levin D. 1985. Ecology of achene dimorphism in Heterotheca latifolia: I. Achene structure, germination and dispersal. The Journal of Ecology, 73(1): 133-145.(1)
[38] Weight C, Parnham D, Waites R. 2008. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation. The Plant Journal, 53(3): 578-586.(1)