文章信息
- 陈佳妮, 廖亮, 黄增冠, 戴文圣, 喻卫武, 胡渊渊, 吴家胜
- Chen Jiani, Liao Liang, Huang zengguan, Dai Wensheng, Yu Weiwu, Hu Yuanyuan, Wu Jiasheng
- 香榧与榧树叶片光合特性及其光保护机制的比较
- A Comparative Study on Photosynthetic Characteristics and Photoprotective Mechanisms between Torreya grandis cv. ‘Merrilli’ and Torreya grandis
- 林业科学, 2015, 51(10): 134-141
- Scientia Silvae Sinicae, 2015, 51(10): 134-141.
- DOI: 10.11707/j.1001-7488.20151017
-
文章历史
- 收稿日期:2015-05-05
- 修回日期:2015-09-06
-
作者相关文章
2. 乐清市雁荡山林场 乐清 325614
2. Yandang forest farms of yueqing city Yueqing 325614
叶片是果树进行光合作用的主要器官,其光合特性对果实产量和质量均有重要的影响。越来越多的研究表明,提高植物的抗光抑制能力是提高产量的一种重要途径(Horton,2000; Wang et al.,2002; Zhu et al.,2004; Murchie et al.,2011)。当植物光合机构吸收的光能超过光合作用所能利用量时,易使光合机构发生光抑制(demmig-adams and adams III,1992),会降低叶片的光合利用效率,严重时甚至会促使叶片死亡、脱落(Lovelock et al.,1994)。尤其在叶片发育初期,其光合速率较低,所捕获的光能大大超过了其光合作用所需的光能,叶片可能更易受到光抑制(Bertamini et al.,2003)。然而,植物在长期的进化过程中逐渐形成一系列光保护机制,如通过叶片角度和叶片的表皮毛减少光能的吸收(Ishida et al.,1999; Oliveira et al.,2000; Ishida et al.,2001),或者通过保护酶体系、类胡萝卜素猝灭三线态叶绿素和单线态氧(Bertamini et al.,2003)、增加热耗散(Jahns et al.,1994)等以保证叶片光合作用的有效进行。因此,研究植物的光保护机制(抗光抑制能力)对其叶的生长发育及其树体的生长均具有重要的意义。
香榧(Torreya gr and is cv. ‘Merrillii’)隶属红豆杉科(Taxaceae)榧属常绿乔木,是榧树(Torreya gr and is)种内自然变异经人工选育嫁接繁殖栽培的优良品种,其种子具有较高的营养价值,在我国已有1 300多年的栽培历史。生产上,通常采用2年生榧树(实生苗)作为砧木嫁接香榧,可以大大缩短结果时间,一般4~5年开始挂果,15年后达盛果期,而榧树(实生苗)生长缓慢,一般20年才开始结实。香榧(嫁接苗)和榧树(实生苗)叶片在形态上差异比较大(香榧叶片显深绿色,叶厚,而榧树叶片显草绿色,叶薄),两者之间叶片光合特性的差异可能是结实差异的主要原因。本研究通过对不同发育阶段的香榧和榧树叶片光响应、叶绿素含量、叶氮含量及叶绿素荧光参数的测定,初步探讨香榧与榧树叶片光合特性及其光保护机制的差异,为进一步揭示香榧提早结的原因提供一定的理论依据。
1 材料与方法 1.1 研究地自然概况和试验材料试验于2014年4—6月在浙江省临安市浙江农林大学香榧基地进行。临安位于浙江省西北部,东临杭州余杭区(118°51′—119°52′ E,29°56—30°23′ N),属于亚热带季风气候,温暖湿润,光照充足,雨量充沛。该市年平均温度15.9 ℃,年均降水量1 613.9 mm,无霜期年平均为237天。年平均日照数为1 837.9h,日照百分率为41.6%,在长三角地区处于中等偏上水平(叶小猛等,2012),土壤以红壤、黄壤、棕黄壤、岩性土为主,肥力较好。
供试材料为13年长势一致、树冠良好的香榧嫁接苗(1999年2+13嫁接苗,砧木为2年生榧树,穗条为香榧)和15年生榧树实生苗为试验标准木,各为6株,分别于2014月4月30日开始对香榧萌芽的新梢进行挂牌标记,5月6日开始对榧树萌芽的新梢进行挂牌标记。具体的温度和光强见表 1。
![]() |
于2014年5月10日—6月30日期间,选取刚展平的幼叶(即萌芽后10天,YL)和成熟叶(叶片面积已达到最大,即萌芽后50天,ML)进行以下指标的测定。
1)光响应曲线 采用Li-6400便携式光合仪(美国Li-cor公司)的6400-22不透明簇状叶室,光源为18RGB人工光源,设置光合有效辐射强度(PAR)梯度为1 000,800,600,400,200,150,100,50,20,0 μmol m-2s-1测定所标记叶片的光响应曲线。
分别于自然条件下正常光强(9:00)和高光强(13:00)对香榧和榧树幼叶、成熟叶进行气体交换参数的测定。测定时,光强采用外界的实际光强(根据外源光温传感器显示的光照强度),叶室温度控制在30 ℃,CO2浓度400 μmol mol-1,由CO2小钢瓶控制CO2浓度,相对湿度为50%,气体流速为500 μmol s-1。每种光强下稳定4 mins记录数据,重复3~4次,取测定结果的平均值。根据光合助手计算出光响应曲线光饱和点(LSP)、光补偿点(LCP)、最大净光合速率(Amax)、表观量子效率(AQY)和暗呼吸速率(Rd)。
2)比叶重(SLW)测定气体交换后,将所测叶片收集,用扫描法测定叶面积(张小全等,2000),即用透明胶带将披针叶粘贴于A4纸上,再用扫描仪扫描,计算测定叶面积。然后,将叶片于85 ℃烘干至恒质量,称量干质量。比叶质量(SLW,g·m-2)=叶片干质量/叶片面积。
3)叶片氮素含量 香榧和榧树幼叶、成熟叶的叶氮含量测定参考凯氏定氮法,为与光合速率保持一致,叶片的叶氮含量均采用单位面积表示,并以饱和最大光合速率(Amax)与叶氮含量的比值表示光合氮利用效率(PNUE)(Qing et al.,2012)。
4)光合色素含量 称取0.02 g(称取相同质量的同枝条叶片在方格纸上计算出实际面积)的不同发育阶段不同叶型的叶片放入盛有8 mL提取液(95%乙醇)的离心管中,遮光浸提24 h,用紫外分光光度计(UV2500,岛津)测其在664,649,470 nm下的吸光度。为与光合速率一致,叶绿素a,b和类胡萝卜素含量均用单位面积表示,计算方法参考Lichtenthaler(1987)。
5)叶绿素荧光参数 分别选择香榧和榧树幼叶、成熟叶,采用PAM2500荧光仪(Walz,Effeltrich,Germany)进行测定快速光曲线的测定。测定前,均进行充足的暗适应。先测定最小荧光产量(F0)和最大荧光产量(Fm),随后打开活化光,强度为785 μmol·m-2s-1,待荧光信号到达稳态后(4~5 mins)打开饱和脉冲光,测定任意时间的实际荧光产量(Ft)和光适应下的最大荧光产量(Fm′); 然后开始测定快速光曲线,共10个光强梯度,从低到高分别为0,2,6,64,101,141,198,271,363,474,619,785 μmol·m-2s-1。每个光强梯度照射样品20 s后打开饱和脉冲光进行荧光猝灭分析,记录快速光响应曲线。荧光参数按下列公式计算:
$Y(II)=({F_{\text{m}}}' - {F_{\text{t}}})/{F_{\text{m}}}'$ | (1) |
$Y(NO)= {F_{\text{t}}}/{F_{\text{m}}}$ | (2) |
$Y(NPQ)=({F_{\text{t}}} - {F_{\text{m}}}')-({F_{\text{t}}}/{F_{\text{m}}})$ | (3) |
$ Y(II)+ Y(NO)+ Y(NPQ)= 1 $
式中:Y(II)为PSII的实际光化学量子效率,Y(NO)为PSII中荧光和不依赖光的基础热耗散量子效率,Y(NPQ)为PSII中△pH和叶黄素调节的热耗散量子效率。 1.3 数据分析所有数据处理用DPS分析软件(v.7.55),显著性差异分析采用Tukey检验; 用光合助手(Photosynthesis)拟合光响应曲线。
2 结果与分析 2.1 光合-光响应曲线如图 1所示,无论香榧或榧树幼叶,当PAR<400 μmol·m-2s-1时,Pn随光强的增强迅速增加,此时光合有效辐射强度是榧树叶片光合作用的主要限制因子; 当PAR>400 μmol·m-2s-1时,Pn随光强的增大其上升速度开始减慢,并逐渐趋于平缓,达到光饱和状态。无论香榧或榧树成熟叶,当PAR<600 μmol·m-2s-1时,Pn随光强的增强迅速增加; 当PAR>600 μmol·m-2s-1时,Pn随光强的增大其上升速率开始减慢,逐渐达到光饱和状态。对光合-光响应曲线进行非直角双曲线方程进行拟合,结果见表 2。香榧幼叶的Amax显著小于其成熟叶(P≤0.05),但LCP和Rd均显著高于其成熟叶(P≤0.05); 但榧树的LSP在发育过程中无明显差异(P≥0.05)。香榧幼叶的LSP,Rd和Amax均显著低于榧树幼叶(P≤0.05),但香榧成熟叶的LSP和Amax均显著高于榧树成熟叶(P≤0.05)。
![]() |
图 1 香榧和榧树幼叶、成熟叶的光合-光响应曲线 Fig. 1 Light response curves of net photosynthetic rate (Pn) in young and mature leaves of T. grandis cv. ‘Merrilli’ and T. grandis |
![]() |
![]() |
无论是香榧或榧树,随叶片的发育,叶片的比叶重(SLW)呈增大趋势,其中香榧和榧树成熟叶的SLW显著高于其幼叶,其平均值高了85.9和133.2 g·cm-2(相对差值分别为177.3%和148.3%)(P≤0.05)。香榧幼叶和成熟叶的SLW显著高于榧树叶片,其平均值高了17.2和64.5 g·cm-2(相对差值分别为29.7%和44.8%)(P≤0.05,图 2)。
![]() |
图 2 香榧和榧树幼叶、成熟叶比叶重(SLW)的变化 Fig. 2 Changes in specific leaf area (SLW) in young and mature of T. grandis cv. ‘Merrilli’ and T. grandis 图中数据为均值±标准误差, 不同字母表示差异显著(P≤0.05). Note: Data are presented as the mean ± standard error, Different letters denote significant differences at P≤0.05 level. |
无论香榧或榧树,随叶片发育进程,叶片的N含量均呈上升趋势,其中香榧和榧树成熟叶的N含量显著高于其幼叶,其平均值分别高了1.43和0.86 g·m-2(相对差值分别为73.1%和58.2%)(P≤0.05)(图 3A)。香榧成熟叶的光合氮素利用效率(PNUE)显著大于其幼叶(P≤0.05),而榧树成熟叶的PNUE显著小于其幼叶(P≤0.05,图 3B)。香榧幼叶或成熟叶的PNUE均显著低于榧树叶片(P≤0.05,图 3B)。
![]() |
图 3 香榧和榧树幼叶、成熟叶片的叶氮含量和光合氮素利用效率(PNUE) Fig. 3 Nitrogen content and PNUE in young and mature leaves of T. grandis cv. ‘Merrilli’ and T. grandis 图中数据为均值±标准误差, 不同字母表示差异显著(P≤0.05). Data are presented as the mean±standard error. Different letters denote significant differences at P≤0.05 level. |
试验表明,随叶片发育进程,香榧和榧树叶的叶绿素a(Chl a)、叶绿素b(Chl b),总叶绿素(Chl(a+b))及类胡萝卜素(Car)均呈上升趋势,其中香榧和榧树成熟叶的Chl(a+b)含量比其幼叶分别增加了211.6%和55.5%(P≤0.05),香榧和榧树成熟叶片的Car分别比其幼叶增加了103.5%和43.8%(P≤0.05); 但Car/Chl(a+b)及Chl a/b却呈下降趋势(表 4)。香榧幼叶的Car/Chl(a+b)和Chl a/b比值显著高于榧树幼叶(P≤0.05),但榧树成熟叶片的Car/Chl(a+b)显著高于香榧成熟叶片(P≤0.05)。香榧与榧树叶片的光合速率与叶绿素含量之间呈显著性正相关性(图 4)。
![]() |
![]() |
图 4 香榧和榧树幼叶、成熟叶片的总叶绿素与最大净光合速率(Amax)之间的相关性 Fig. 4 The relationship of total chlorophyll content (Chl(a+b)) and the maximum net photosynthetic rate(Amax)in young and mature leaves of T. grandis cv.‘Merrilli’ and T. grandis |
通过测定一天之中光强变化比较大的2个时间点(9:00时为正常光强和13:00时为高光强)来进一步分析香榧/榧树叶片对高光强的响应。无论是香榧/榧树幼叶、成熟叶,9:00时叶片的(Pn)和气孔导度(Gs)均显著高于13:00时的叶片(P≤0.05)(表 4)。与9:00的叶片相比,上午13:00的香榧幼叶和成熟叶Pn分别下降了33.7%和26.8%,Gs分别下降了27.7%和23.5%,但其Ci却显著升高(P≤0.05); 上午13:00的榧树幼叶和成熟叶的Pn分别下降了35.1%和44.4%,Gs分别下降了38.7%和45.0%,但其Ci无显著变化(P≥0.05)。
2.6 叶绿素荧光参数如图 5所示,无论是香榧或榧树,Y(II)均随着光强的增加而降低; 而Y(NPQ)随光强的增加而升高。香榧幼叶的Y(II)显著小于榧树幼叶(P≤0.05),香榧幼叶的Y(NPQ)显著高于榧树幼叶(P≤0.05); 榧树成熟叶的Y(NPQ)显著高于香榧成熟叶(P≤0.05),但其Y(NO)却显著低于香榧成熟叶(P≤0.05)。
![]() |
图 5 香榧和榧树幼叶(a,b)、成熟叶(c,d)的实际光化学量子效率(Y(II))、PSII中△pH和叶黄素调节的热耗散量子效率(Y(NPQ))、PSII中荧光和不依赖光的基础热耗散量子效率(Y(NO))随光强升高的变化 Fig. 5 Changes in the fraction of absorbed irradiance consumed via PSII photochemistry (Y(II)), △pH- and xanthophyll-regulated thermal dissipation (Y(NPQ)), and the sum of fluorescence and light-independent constitutive thermal dissipation (Y(NO)) in young and mature leaves of T. grandis cv. ‘Merrilli’ and T. grandis with increasing photosynthetic active radiation (PAR) |
果树干物质的90%~95%来源于光合作用。而叶片是果树进行光合作用的主要器官,其生长发育和性状特征直接影响着果实的产量和品质。香榧幼叶的最大净光合速率(Amax)显著低于榧树幼叶(图 1; 表 2),但其SLW却显著高于榧树幼叶(图 2),这可能是由于其较低的Rd有利于干物质的积累。Amax是衡量叶片光合能力的重要标准(张小全等,2001; 霍宏等,2007)。香榧成熟叶的Amax和SLW均显著高于榧树成熟叶,表明香榧成熟叶的光合能力强。许多研究表明植物叶片的氮含量与光合能力有很强的正相关性(Wright et al.,2005; Reich et al.,2009),这是因为通常叶氮含量中约有一半分配到光合机构中,如卡尔文循环和类囊体相关的酶(Evans,1989; 1996; Reich et al.,1994; 张亚杰等,2004)。无论香榧幼叶或成熟叶的氮含量均显著高于榧树叶片(图 3A),但是其PNUE却显著低于榧树叶片(图 3B)。因此,香榧在生产中必须注意氮肥的施用。PNUE较低植物通常会具有较高的SLW,由于植物增加CO2扩散的阻力、减少叶片透射光的比率和增加分配到非光合组分的N比率,降低了PNUE(Poorter et al.,1998; Hikosaka,2004),这可能是香榧叶片相对较厚的直接原因。
此外,研究表明,SLW能反映植物对资源的利用方式(Poorter et al.,2009)。具有较高SLW的常绿树种能在贫瘠或酸性土壤等逆境条件下提高资源的利用效率(Ishida et al.,2006)。无论是香榧幼叶或成熟叶片的SLW均显著高于榧树叶片,表明香榧叶片在逆境条件下对资源的利用效率高。但研究表明,SLW较大的植物,由于叶片中大部分物质用于形成防御结构(防虫食等)或者增加叶肉细胞密度,常形成厚度较大而面积较小的叶片,不适宜强光下生存(Reich et al.,1998)。由此可知,相同的强光下,具有较低LSP和Amax的香榧幼叶更易受到光抑制(Bertamini et al.,2003)。然而,与9:00时相比,13:00时(高光强)香榧幼叶Pn的下降幅度小于榧树幼叶(表 4)。与9:00时相比,13:00时(高光强)香榧、榧树幼叶的Pn和Gs均显著降低,但其Ci无显著变化,表明13:00时叶片Pn低主要是由于非气孔限制引起的。因为只有在Gs与Ci/Ca都降低时才能说明高光强使榧树叶片光合能力的下降主要是由气孔限制引起的(Xu et al.,1995)。较低LSP和Amax的香榧幼叶可能具有较强的光保护机制使光合机构发生光抑制的程度小些。Y(NPQ)代表PSII处通过△pH和叶黄素调节的热耗散的量子效率,通常被认为是常绿树种叶片一种十分重要的光保护机制(Ishida et al.,2014)。具有较长寿命和较高SLW的阔叶树种,越冬时(碳同化能力降低),常通过降低叶片的实际光化学效率(Y(II))和增强Y(NPQ)(调节性热耗散)来保护叶片避免发生光抑制(Adams et al.,2004; Yamazaki et al.,2011)。本研究显示,香榧幼叶的Y(II)显著低于榧树幼叶,但其Y(NPQ)却显著高于榧树幼叶,表明这可能是香榧幼叶的一种重要光保护机制。Y(NO)代表PSII处非调节性能量耗散的量子效率,是光损伤的重要指标,若Y(NO)较高,则表明光化学能量转换和热耗散不足以将植物吸收的光能完全消耗掉,即入射光强可能超过了植物能接受的程度(Kramer et al.,2004)。香榧成熟叶的Y(NO)显著高于榧树成熟叶(图 5),这可能是夏季香榧树上常会出现大量被强太阳光灼伤的叶片的原因。当然,要明确这个假说,还需进一步研究灼伤前后的叶片光合作用及其光保护机制的差异。
此外,与榧树幼叶相比,香榧幼叶具有较高的Car/Chl和Chl a/b,可能是幼叶减少捕光色素Chlb控制光能的吸收,使Chl a/b升高; 由于Car的主要成分是叶黄素(Jahns et al.,1994),香榧幼叶具有较高Car/Chl的香榧幼叶可能是通过积累较多的Car耗散其过剩光能,9:00时香榧幼叶与榧树幼叶的Gs大小相当,但13:00香榧幼叶的Gs显著高于榧树幼叶(表 4),表明保持较高的Gs可能有利于香榧幼叶通过蒸腾作用来降低叶片的温度(Warren,2006)。研究表明,耐热性好的海岛棉(Gossypium barbadense var. acuminatum)具有较高的Gs(Liu et al.,1994)。综上所述,具有较低的Y(II)和较高的Y(NPQ),Chl a/b,Car/Chl,Gs可能是香榧幼叶对抗光抑制做出的适应性机制。
4 结论综上所述,香榧与榧树幼叶、成熟叶之间的光合特性和光保护机制存在差异。香榧幼叶较榧树幼叶具有较低的Amax,LSP和较高的SLW; 但香榧成熟叶较榧树成熟叶具有较高的Amax,LSP和SLW。高光强下(13:00时)香榧、榧树幼叶、成熟叶均发生明显的光抑制,香榧幼叶表现出较小程度的光抑制,是由于其能通过增加Y(NPQ)、Car的形式进行过剩光能的热耗散及通过降低Chl b含量来减少光能的捕获; 香榧成熟叶的Y(NO)显著高于榧树成熟叶,表明通过光化学能量转换和热耗散不足以将所吸收的光能完全消耗掉,说明香榧成熟叶可能受到光损伤,但这需要进一步研究灼伤前后的叶片光合作用及其光保护机制的差异。本试验显示香榧幼叶、成熟叶氮含量均显著高于榧树叶片,但其PNUE却显著低于榧树,表明香榧成熟叶光合能力的提高是以高氮素消耗为代价的,因此香榧生产中应注意氮肥的使用。
[1] |
霍 宏, 王传宽. 2007. 冠层部位和叶龄对红松光合蒸腾特性的影响. 应用生态学报, 18(6): 1181-1186. (Huo H, Wang C K. 2007. Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis. Chinese Journal of Applied Ecology, 18(6): 1181-1186[in Chinese]).( ![]() |
[2] |
叶小猛,洪 冉. 2012. 临安近 50 年日照变化特征及影响因子分析. 广东气象, 33(6): 34-37. (Ye X M, Hong R. 2012. Variation characteristics of sunshine duration in Linan in recent 50 years and influential factors. Guangdong Meteorology. 33(6): 34-37[in Chinese]).( ![]() |
[3] |
张小全, 徐德应. 2000. 杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化. 林业科学, 36(3): 19-26. (Zhang X Q, Xu D Y. 2000. Seansonal changes and daily courses of photosynthetic characteristics of 18 year old Chinese fir shoots in relation to shoot ages and positions within tree crown. Scientia Silvae Sinicae, 36(3): 19-26[in Chinese]).( ![]() |
[4] |
张亚杰, 冯玉龙. 2004. 不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系. 植物生理与分子生物学学报, 30(3): 269-76. (Zhang Y J, Feng Y L. 2004. The relationships between photosynthetic capacity and Lamina mass per unit area, nitrogen content and partitioning in seedlings of two ficus species grown under different irradiance. Acta Photophysiologica Sinica, 30(3): 269-76[in Chinese]).( ![]() |
[5] |
Adams W W III, Zarter C R, Ebbert V, et al. 2004. Photoprotective strategies of overwintering evergreens. BioScience 54: 41-49.(![]() |
[6] |
Bertamini M, Nedunchezhian N. 2003. Photoinhibition of photosynthesis in mature and young leaves of grapevine (Vitis vinifera L.). Plant Science, 164(4): 635-644.(![]() |
[7] |
Demmig-Adams B, Adams III WW. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1): 599-626.(![]() |
[8] |
Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78(1): 9-19.(![]() |
[9] |
Evans J R. 1996. Developmental constraints on photosynthesis: effects of light and nutrition. Photosynthesis and the Environment. Springer. 281-304.(![]() |
[10] |
Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 990(1): 87-92.(![]() |
[11] |
Hendrickson L, Furbank R T, Chow W S. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82(1): 73-81.(![]() |
[12] |
Hikosaka K. 2004. Interspecific difference in photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 117(6): 481-494.(![]() |
[13] |
Horton P. 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. Journal of Experimental Botany, 51(suppl 1): 475-485.(![]() |
[14] |
Ishida A, Toma T, Marjenah. 1999. Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. Tree Physiology, 19(7):467-473.(![]() |
[15] |
Ishida A, Nakano T, Uemura A, et al. 2001. Light-use properties in two sun-adapted shrubs with contrasting canopy structures. Tree Physiology, 21(8):497-504.(![]() |
[16] |
Ishida A, Diloksumpun S, Ladpala P, et al. 2006. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiology, 26(5): 643-56.(![]() |
[17] |
Ishida A, Yamazaki Jun-Ya, Harayama H, et al. 2014. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand. Tree Physiology, 34(1): 15-28(![]() |
[18] |
Jahns P, Krause G H. 1994. Xanthophyll cycle and energy- dependent fluorescence quenching in leaves from pea plants grown under intermittent light. Planta, 192(2), 176-182.(![]() |
[19] |
Kramer D M, Johnson G, Kiirats O, et al. 2004. New fluorescence parameters for the determination of QA redox state and excitation fluxes. Photosynthesis Research, 79(2): 209-218.(![]() |
[20] |
Lichtenthaler H K. 1987. Chlorophylls and carotenoids - pigments of photosynthetic biomembranes. Methods Enzymol, 148(34):350-382.(![]() |
[21] |
Liu Z M, Radin J W, Turcotte EL, et al. 1994. High yields in advanced lines of pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiologia Plantarum, 92(2): 266-272.(![]() |
[22] |
Lovelock C E, Jebb M, Osmond C B. 1994. Photoinhibition and recovery in tropical plant species: response to distrurbance. Oecologia, 97(3): 297-307.(![]() |
[23] |
Murchie E H, Niyogi K E. 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1): 86-92.(![]() |
[24] |
Oliveira G, Peñuelas J. 2000. Comparative photochemical and phenomophological responses to winter stress of an evergreen (Quercus Ilex L.) and a semi-deciduous (Cistus albidus L.) Mediterranean woody species. Acta Oecologia-international Journal of Ecology, 21(2):97-107.(![]() |
[25] |
Poorter H, Evans J R. 1998. Photosynthetic nitrogen use efficiency of species that differed inherently in specific leaf area. Oecologia, 116(1/2): 26-37.(![]() |
[26] |
Poorter H, Niinemets V, Poorter L, et al. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182(3): 565-88.(![]() |
[27] |
Qing H, Cai Y, Xiao Y, et al. 2012. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments. Biological Invasions, 14(10): 2039-2048.(![]() |
[28] |
Reich P, Walters M, Ellsworth D, et al. 1994. Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 97(1): 62-72.(![]() |
[29] |
Reich P B, Walters M B, Ellsworth D S, et al. 1998. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia, 114(4): 471-482.(![]() |
[30] |
Reich P B, Falster D S, Ellsworth D S, et al. 2009.Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die? New Phytologist, 183(1): 153-66.(![]() |
[31] |
Wang Q D, Zhang Q L, Zhu X G, et al. 2002. PSII photochemistry and xanthophylls cycle in two super-high-yield rice hybrids, Liangyoupeijiu and Hua' an 3 during photoinhibition and subsequent restoration. Aca Botanica Sinica, 44(11): 1297-1302.(![]() |
[32] |
Warren C R. 2006. Estimation the internal conductance to CO2 movement. Functional Plant Biology, 33(5): 431-442.(![]() |
[33] |
Wright I J, Reich P B, Cornelissen J H, et al. 2005. Assessing the generality of global leaf trait relationships. New phytologist, 166(2): 485-96.(![]() |
[34] |
Xu D Q. 1995. Non-uniform stomatal closure and non-stomatal limilation of photosynthesis. Plant Physiology Communications, 31: 246-252.(![]() |
[35] |
Yamazaki J Y, Kamata K, Maruta E. 2011. Seasonal changes in the excess energy dissipation from photosystem II antennae in overwintering evergreen broad-leaved trees Quercus myrsinaefolia and Machilus thunbergii. Journal of Photochemistry and Photobiology b-biology, 104(1):348-356.(![]() |