林业科学  2015, Vol. 51 Issue (10): 110-116   PDF    
DOI: 10.11707/j.1001-7488.20151014
0

文章信息

翟飞飞, 孙振元
Zhai Feifei, Sun Zhenyuan
木本植物雌雄株生物学差异研究进展
Progress in Study on Sexual Differences of Woody Dioecious Plants
林业科学, 2015, 51(10): 110-116
Scientia Silvae Sinicae, 2015, 51(10): 110-116.
DOI: 10.11707/j.1001-7488.20151014

文章历史

收稿日期:2014-9-28
修回日期:2015-09-06

作者相关文章

翟飞飞
孙振元

木本植物雌雄株生物学差异研究进展
翟飞飞, 孙振元    
中国林业科学研究院林业研究所 国家林业局林木培育重点实验室 北京 100091
摘要:雌雄异株的性系统在木本植物中普遍存在,关于雌雄差异已有很多研究,且一直是研究热点,因此本文对木本植物雌雄株在形态解剖学、生理学、分子生物学及化学防御方面的差异进行综述,以期为雌株、雄株在生产实践中的选择性运用及理论研究提供参考。在形态解剖学方面,多年生植物雄株株型高、叶片和生物量大,逆境条件下细胞器受损较轻,适应不良环境的结构特征明显,其生长优势; 而结一次果或生命较短、结多次果的植物则是雌株占生长优势,如叶生物量比及叶面积比大、叶片旱生结构特征明显、生态可塑性大等。在生理学方面,虽然正常条件下一些植物的雌雄株无显著差异,但是逆境条件下差异显著。大多数植物雄株的光合作用、渗透调节作用、保护酶活性等高于雌株,且逆境条件下受伤害程度小于雌株。雌雄株脱落酸、赤霉素等内源激素含量存在显著差异,且该差异与发育时期密切相关; 逆境条件下雌株脱落酸含量显著高于雄株,雌株对逆境条件反应敏感。在分子生物学方面,雄株可通过基因表达水平的上调和一些关键蛋白的高表达,应对不良环境; 雄株中,大部分基因与激素生物合成、光合作用、活性氧清除酶系统等有关,且与电子传递、光系统稳定、氧化还原平衡以及应激反应有关的蛋白丰度较高。在一些物种中已找到与性别基因位点相连锁的标记,可用于雌雄异株植物的性别鉴定。在化学防御方面,雌株的酚类等物质含量高、叶片韧性值大,对病虫害的防御能力强。有关雌雄差异的研究中,来源于天然种群的雌雄株个体间遗传差异较大,而同一家系的雌雄株仍存在一定程度的遗传变异,因此最好选择固定父母本的杂交子代。目前大多数雌雄差异研究主要集中在生长发育的某一阶段,而雌雄差异与植物的发育时期密切相关,为了更全面地了解雌雄差异,有必要对不同发育时期的差异进行研究。另外,加强雌雄株在生理、分子等水平的差异研究,可为雌雄异株植物的性别鉴定提供理论依据。
关键词木本植物    雌雄异株    雌雄差异    
Progress in Study on Sexual Differences of Woody Dioecious Plants
Zhai Feifei, Sun Zhenyuan    
Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration Research Institute of Forestry, CAF Beijing 100091
Abstract: Dioecious sexual system is widespread in woody plants. There are many researches about male and female differences, which has been a hot research topic. In order to provide a reference for the selection of male and female plants in production practice and theoretical study, this article reviewed differences of woody male and female plants in morphology and anatomy, physiology, molecular biology, and chemical defense. In morphology and anatomy, some perennial male plants show taller plant type, bigger leaf and biomass, less damaged organelle under the condition of stresses, and more obvious architectural feature for adapting adverse environment, all of which endow them a growth advantage; However, some female plants possess bigger aboveground biomass, and more obvious xeromorphic leaf, which are important characters in growth. In physiology, most of plants do not behave significant sexual differences in physiological performance under normal condition, but the differences can be significant under adversity condition. Most of male plants show higher photosynthesis, regulating function, protective enzyme activities than female plants under stresses. Endogenous hormones (such as abscisic acid and gibberellin) contents are significantly different in two sexes, and the difference is closely related to growth stage; abscisic acid content is higher in female plants under adversity condition and female plants are sensitive to adversity. In molecular biology, male plants could up-regulate genes expression levels and high expression of some key proteins in response to adverse environment; And most of the genes are related to hormone biosynthesis, photosynthesis, enzyme system of active oxygen removal, and the proteins, involving in electron transfer, photosystem stability, redox equilibrium, and stress response, have higher abundances. Molecular markers of sex-linked genes have been found in some species, and they can be used to sex determination of dioecism. In chemical defense, it has been recognized that defensive substances such as phenols generally are higher and the leaves are tougher in female plants, therefore they have stronger resistance to herbivores. In the sexual difference research, in natural populations the male and female plants have greater genetic differences, and there exist to some degree genetic variation within a family, thus the best materials are the hybrids with fixed parents. Currently, majority of researches on sexual differences principally focus on a certain growth and development stage, and it has been proved that sexual differences are strongly linked to developmental stage. Thus it is necessary to conduct study on different developmental stages to understand the differences more comprehensively. Moreover, sexual differences in physiological and molecular levels should be enhanced, so as to supply theoretical basis for sex determination of dioecious plants.
Key words: woody plant    dioecism    sexual difference    

雌雄异株植物,是指雌花和雄花分别生长在不同植株上的种子植物。该类型植物不仅是陆地生态系统的重要组成部分,也在许多森林生态系统占据优势地位。据研究,24万种被子植物中具有雌雄异株的性系统有14 620种(约占6%),分布于959个属(Renner et al.,1995),其中以风媒传粉的木本植物居多(Freeman et al.,1980)。自Darwin(1877)认识到雌雄株的生殖差异将导致性别特化及对资源的不同需求以来,雌雄差异一直是研究热点。近年来,与植物性别有关的研究主要集中在早期性别鉴定(Esfandiyari et al.,2011; Li et al.,2013)、性别比例(Barrett et al.,2010; Sinclair et al.,2012)、性别分化(Xing et al.,2009; Diggle et al.,2011)、性别决定系统(Aryal et al.,2014)、雌雄差异(Laporte et al.,1996; Isogimi et al.,2011; 杨赵平等,2011)以及雌雄株对逆境的适应性(Li et al.,2004; Li et al.,2005; Zhang et al.,2011)等方面。

由于雌雄性别的异株表达,这类植物在环境胁迫下维持种群稳定性的能力较弱(胥晓等,2007; 陈小梅等,2014),因此研究逆境条件对雌雄株形态、生理、生殖、抗逆性等的影响,有助于了解物种的进化与发展方向,对衰退中的种群采取及时有效的保护措施。另一方面,对木本植物雌雄株的差异进行研究,有助于雌雄异株植物的早期性别鉴定,为育种、制种和栽培生产提供技术支持。本文主要对木本植物雌雄株在形态解剖学、生理学、分子生物学以及化学防御等方面的差异进行综述,以期为雌株、雄株在生产实践中的选择性运用及理论研究提供参考。

1 木本植物雌雄株的形态解剖学差异 1.1 木本植物雌雄株的形态学差异

在植物中尚未发现雌雄异形现象,但是很多多年生植物雄株在叶片数量及叶面积、生长势、树冠体积、克隆生长能力和生物量等方面都超过雌株(Jing et al.,1990; Li et al.,2007; Barrett et al.,2013)。如连香树(Cercidiphyllum japonicum)雄株叶长、叶宽、叶片表面积及干重等都高于雌株(陶应时等,2013); 树龄较大的乳香黄连木(Pistacia lentiscus)雄株植株高大,冠层体积和叶面积指数、基茎数目值较大(Barradas et al.,1999Correia et al.,2000); 温度升高时Salix myrsinifolia雄株基茎和生物量增加比雌株明显(Nybakken et al.,2012)。以上这些特征都赋予雄株生长优势。而对于结一次果或生命较短、结多次果的植物,雌株优于雄株(Obeso,2002; Cornelissen et al.,2005)。如龙江柳(Salix sachalinensis)雌株叶生物量比(总叶片干质量/总枝条干质量)、叶面积比(总叶面积/总枝条生物量)以及1年生枝条上着生的营养枝数量都高于雄株(Ueno et al.,2003)。

1.2 木本植物雌雄株的解剖学差异

胡杨(Populus euphratica)雌株叶片及表皮、角质层、栅栏组织厚度,主脉维管束和木质部高度都大于雄株(杨赵平等,2011); 中国沙棘(Hippophae rhamnoides subsp. sinensis)在水分条件较差生境中,雌株叶片及上下表皮厚度、侧脉维管束距离较小,表皮毛密度、气孔纵径、下表皮厚度和密度、栅栏组织与海绵组织比值较大(高丽等,2010)。可见胡杨和中国沙棘雌株的旱生结构特点更明显,生态可塑性大。而美国红梣(Fraxinus pennsylvanica)雄株茎导管分子具有长导管性、宽导管性、梯纹-网纹管和单穿孔等特征,这些特征为雄株在生长季旺盛的水分需求提供结构保障(郭学民等,2010)。青杨(Populus cathayana)雌株在干旱胁迫下叶绿体出现质体小球(通常被认为是一种衰老症状)(Zhang et al.,2010a),盐胁迫下类囊体膨胀、线粒体降解、细胞核松散、质体小球增多,伴随着光合、呼吸作用下降,质膜透性增加(Chen et al.,2010a); 同等胁迫下,雄株线粒体、叶绿体和细胞膜结构受损较小。这些结果表明逆境条件下雌株受胁迫程度较为严重,雄株叶肉细胞的结构和功能受影响较小。

2 木本植物雌雄株的生理学差异

木本雌雄株对资源的不同需求可能导致其在形态、生长、生理及生态特性等方面表现出差异(Marshall et al.,1993; Laporte et al.,1996; Ueno et al.,2006)。一般而言,雌雄差异在逆境条件下更明显(Correia et al.,2000; Retuerto et al.,2000; Álvarez-Cansino et al.,2010)。因此,相关研究主要集中在干旱、极端温度、盐、光周期等非生物胁迫以及缺素环境下雌雄株的功能性响应差异等方面(Montesinos et al.,2012)。目前,有关雌雄株在生理学方面的差异研究主要有以下5个方面。

2.1 本本植物雌雄株的光合特性差异

一般认为,雄株生殖投资少,营养生长快(Cornelissen et al.,2005); 雌株生殖投资多,营养生长相对缓慢(Jing et al.,1990)。杞柳(Salix integra)雌株比雄株枝条更新速度快、新生叶片比例高,且当年生枝条叶片最大净光合速率(net photosynthetic Rate,Pn)大; 虽然雌株生殖消耗多,但是其营养生长并未减小(Tozawa et al.,2009)。可见光合作用增强是雌株高生殖投资的一个超额补偿机制(Obeso,2002)。虽然在施肥处理下,Juniperus thurifera 雄株生殖投资显著高于雌株,但是雌株Pn仍然显著高于雄株,这种特性可能是雌株对高生殖投资长期适应的结果(Montesinos et al.,2012)。相反,在火炬树(Rhus typhina)单优群落里,雄性母株对光能、水分和CO2的利用效率以及Pn等均高于雌性母株,利于资源配置到克隆分株,雄株克隆生长能力强(张明如等,2012)。干旱胁迫下青杨雄株Pn、羧化效率(carboxylation efficiency,CE)以及胞间CO2浓度(intercellular CO2 Concentration,Ci)等下降幅度小于雌株,潜在光化学效率(potential photochemical efficiency,Fv/Fm)保持在较高水平,非光化学淬灭(non-photochemical quenching,NPQ)显著增加(Xu et al.,2008a; Zhang et al.,2010a2012); 盐胁迫下滇杨(Populus yunnanensis)雌株Pn、蒸腾速率(transpiration rate,E),CiFv/Fm和NPQ的下降速率大于雄株(Jiang et al.,2012)。以上结果表明逆境条件下,雄株光合作用受抑程度和PSII电子传递链受损较小,光合器官遭受光损伤时的自我调节机制较强。

2.2 木本植物雌雄株的渗透调节作用差异

脯氨酸(proline,Pro)、可溶性糖(solute sugar,SS)、可溶性蛋白(solute protein,SP)等是重要的渗透调节物质。在水分条件相对较好的生境中,中国沙棘Pro和SS含量均较低,雌雄差异不显著; 在水分胁迫下,雌株Pro和SS含量高,上升幅度显著大于雄株,表现出较强的渗透调节作用,且Pro含量增幅大于SS,由此可见Pro对雌株渗透调节的贡献可能更大(刘瑞香等,2005; 高丽等,2010)。而连香树雄株叶片Pro含量显著高于雌株,细胞膜受损程度显著低于雌株,推测自然生境中可能雄株抗逆性更强,从而提高其生存能力(陶应时等,2013)。在干旱和盐胁迫下,青杨雄株SP和Pro含量显著高于雌株,且电解质渗透率(electrolyte permeability rate,EPR)较低,表明雄株的自我保护能力较强(Chen et al.,2010bZhang et al.,2012)。在高浓度CO2(700 μmol·mol-1)和N沉降(5 g N·m-2a-1)下,青杨雌株叶片SS含量高、Pn和生物量低,雄株茎和根系中SS含量高,且雌株各器官淀粉含量都高于雄株,可能是碳水化合物的积累抑制了雌株生长,雌株对CO2和N素变化的反应更敏感(Zhao et al.,2011)。

2.3 木本植物雌雄株的保护酶活性差异

保护酶在清除植物体内O2·-,H2O2等方面具有重要作用,在一定程度上阻止了活性氧(Reactive Oxygen,ROS)的产生。匍匐柳(Salix repens)和深山柳(S. phylicifolia)雌株叶片多酚氧化酶(polyphenol oxidase,PPO)和过氧化物酶(Peroxidase,POD)活性高于雄株,雌株比雄株的防御能力强(Ruuhola et al.,2013)。中国沙棘在水分条件较好时,雄株过氧化氢酶(catalase,CAT)活性显著高于雌株; 水分条件较差时雌株高于雄株,雌株应对干旱的能力较强(高丽等,2010)。而水曲柳(Fraxinus m and shurica)在5—8月,雄株叶片超氧化物歧化酶(Superoxide Dismutase,SOD)和POD活性均显著高于雌株(詹亚光等,2006); 正常及干旱胁迫下,青杨雄株SOD,POD和PPO活性显著高于雌株(Zhang et al.,2012),说明水曲柳和青杨雄株清除O2·-和H2O2及阻止ROS产生的能力较强,具有较强保护机制。随着温度的降低,青杨雌株POD和谷胱甘肽还原酶(glutathione reductase,GR)活性显著下降,雌株对低温反应敏感; 雄株SOD活性始终高于雌株,表明雄株控制O2·-毒害的能力较强(Zhang et al.,2011)。青杨感染松杨栅锈菌(Melampsora larici-populina)后,雄株SOD,POD,PPO和CAT活性比雌株高,说明雄株在防御和抑制病原体生长方面,拥有更有效的保护机制; 感病雌株抗坏血酸过氧化酶(ascrodate peroxidase,APX)活性升高且检测到2条同工酶条带,而雄株中未发现APX同工酶条带,可能是由于雄株中APX位于叶绿体,雌株中位于细胞质基质(Zhang et al.,2010b)。

2.4 本本植物雌雄株逆境下受伤害程度差异

随田间干旱胁迫程度的增强,中国沙棘叶片MDA含量升高,雄株的上升幅度大于雌株,且差异显著,可见雄株的受伤害程度大于雌株(高丽等,2010)。而干旱胁迫下青杨和滇杨雌株O2·-,H2O2和丙二醛(Malondialdehyde,MDA)含量显著高于雄株(Xu et al.,2008b; Chen et al.,2010b); 淹水胁迫显著增加了雌株的MDA含量(杨鹏等,2012); 青杨感病后,雌株EPR和MDA含量比雄株高(Zhang et al.,2010b)。可见逆境下雌株控制活性氧伤害的能力较弱,受伤害程度高于雄株。另外,青杨雌株对短光周期的适应能力较差,O2·-和MDA含量显著增加且高于雄株; 雄株对长光周期的适应能力较差,MDA显著增加,O2·-产生速率较大(Zhao et al.,2009)。

2.5 木本植物雌雄株的内源激素含量差异

在生长季,银杏(Ginkgo biloba)雄株芽尖脱落酸(abscisic acid,ABA)和吲哚乙酸(indole acetic acid,IAA)含量高于雌株,GA和玉米素(zeatin,ZT)含量低于雌株,叶片内源激素含量与芽尖相似(王白坡等,1999)。在整个生长发育过程中,黄连木(Pistacia chinensis)雄株叶片ABA和IAA含量显著高于雌株; 赤霉素(gibberellic acid,GA)含量在前期(5月21日—7月8日)高于雌株,之后则低于雌株,可能是由雌株生长延迟造成(马丽媛等,2013)。干旱胁迫下,中国沙棘和俄罗斯沙棘(Hippophae rhamnoides)雌株ABA增幅小于雄株,IAA降幅小于雄株,雌株对干旱具有更强的适应性(刘瑞香等,2005)。而青杨在干旱胁迫下雌株ABA含量显著高于雄株,雌株对干旱反应更敏感(Xu et al.,2008b)。短光周期下,青杨雌株ABA含量显著高于雄株,叶片衰老较快; 长光周期下,雌株IAA含量升高、光合速率加快,雄株则相反,雌株对长光周期适应能力更强(Zhao et al.,2009)。

3 木本植物雌雄株的分子生物学差异

Gunter等(2003)通过随机扩增多态性DNA(r and om amplified polymorphic DNA,RAPD)技术找到2个与蒿柳(Salix viminalis)雌株基因位点相连锁的标记,并成功开发出2个序列特征化扩增区域(sequence charactered amplified region,SCAR)标记(AE08780和354520)。瑞典农业科技大学的研究人员利用扩增片段长度多态性(amplified fragment length polymorphism,AFLP)和限制性片段长度多态性(restricted fragment length polymorphisms,RFLP)技术也找到了与柳树性别相连锁的标记,并将其在遗传图谱上进行定位(Semerikov et al.,2003)。

转录组是指在一个生物体中所有基因表达后产物的总和。Jiang等(2012)对盐胁迫下青杨雌雄株的转录谱进行了分析,发现一些参与光合作用的基因在雄株中上调,在雌株中下调,雄株可通过上调基因表达水平应对盐胁迫。滇杨在干旱胁迫下,6 039个基因发生差异性表达,92%在雄株中表达,且大部分基因与激素生物合成、光合作用、活性氧清除酶系统等有关(Peng et al.,2012)。蛋白质组是指个体、细胞或组织所表达的全部蛋白质成分,已广泛应用于植物学的研究。干旱胁迫下青杨雌雄株有许多性别特异性蛋白: 细胞质抗坏血酸过氧化酶、丝氨酸/苏氨酸激酶等仅在雄株中表达,脂肪酸水解酶蛋白、M型硫氧还蛋白仅在雌株中表达; 在雄株中,与电子传递、光系统稳定、氧化还原平衡以及应激反应有关的蛋白丰度较高,干旱胁迫下雄株保护能力更强(Zhang et al.,2010a)。中度盐胁迫(75 mmol·L-1 NaCl)下,青杨雌雄间差异表达蛋白主要参与光合作用,蛋白合成与降解、折叠与组装,碳、能量与类固醇代谢,植物抗逆与防御,氧化还原平衡和信号转导等; 与雌株相比,雄株表现出一些关键蛋白的高表达和低降解,这些蛋白参与电子传递、光合系统稳定、氧化还原平衡和抗逆性,雄株具有更完善的光合作用分子元件,更有效的代谢机制和保护系统以及更高的活性氧清除能力(Chen et al.,2011)。

4 木本植物雌雄株的化学防御差异

木本植物雌雄株可能由于营养生长和生殖生长成本不同,组织营养品质存在差异(Boecklen et al.,1990)。一般认为,雄株化学防御物质及次生代谢物少,营养品质高,也更易遭受病虫害攻击(Cornelissen et al.,2005); 雌株在化学防御或结构防御方面投资较多,叶片品质较差(Jing et al.,1990),对病虫害的防御能力较强。在叶蜂产卵期,Salix Lasiolepis雌株的酚类物质含量显著高于雄株,雄株营养枝及叶片N,P,K含量显著长于或高于雌株,雄株更易遭受食草动物啃食(Boecklen et al.,1990)。S. myrsinifolia雌株生长快,嫩枝中酚类物质含量高,但为何是嫩枝而非叶片需进一步研究(Nybakken et al.,2013)。同域、不同进化枝的3种棕榈(Chamaedorea alternans C. pinnatifronsC. ernesti-augusti)雄株在株高、叶片生长速率; 新生叶片/(原始叶片/年)和生物量生产方面占优势,雌株防御投资较高: 叶片韧性值和酚类物质含量分别比雄株高4%~16%和8%~18%,被摄食几率较低(Cepeda-Cornejo et al.,2010)。

5 问题与展望

我国幅员辽阔,植物资源丰富,雌雄异株植物种类多,然而有关雌雄异株植物的研究却较少,主要集中在水曲柳(詹亚光等,2006)、沙棘(高丽等,2010; 赵延霞等,2012)、火炬树(张明如等,2012)、黄连木(马丽媛等,2013)、栝蒌(刘芸等,2010)、连香树(陶应时等,2013)、胡杨(杨赵平等,2011)、青杨(杨鹏等,2012Zhang et al.,2012)、美国红梣(郭学民等,2010)等植物,并且大部分停留在形态和解剖结构比较阶段,仅少数深入到生理生化及分子水平。

在关于雌雄差异的现有研究中,有2种取材方法: 一种是在天然分布种群中采取成对取样方法(Cepeda-Cornejo et al.,2010; Guangxiu et al.,2009; Chen et al.,2010a),另一种是雌雄个体来源于同一家系(Zhang et al.,2011; Chen et al.,2011; Jiang et al.,2012; Åhman,1997Laporte et al.,1996)。前一种虽然可以控制种群内雌雄株间的空间异质性、消除位置效应,但是由于雌雄异株植物都为异交物种,在天然种群中个体间基因交流充分,遗传变异较大(金燕等,2003); 后一种雌雄个体遗传变异相对较小,但是同一家系中父本或母本可能不一致,仍存在一定程度的遗传变异。因此在雌雄差异研究中,最好固定父母本的杂交子代; 当杂交子代较难获得时,可在天然种群中成对选取较大样本量的雌雄株,数量据物种遗传变异程度而定; 但是在转录组和蛋白质组水平进行研究时,为了尽可能地控制遗传学差异,应选择固定父母本的杂交子代。

木本植物雌雄差异与发育时期密切相关,但大多数是研究生长发育的某一阶段,缺少对雌雄差异的动态研究。因此有必要对不同发育时期的差异进行研究,并继续加强雌雄异株植物对环境胁迫的响应与适应性差异研究(陈娟等,2014)。雌雄株的形态差异主要表现在花器官上,在植物生长发育早期一般无法通过形态鉴定其性别,因此研究雌雄株在生理、分子等水平的差异,可为雌雄异株植物的性别鉴定提供依据。特别是一些分子水平的研究,不受植物生长发育时期的限制(如分子标记),结果客观、可靠。国内有关雌雄差异的研究,无论是从植物种类的广度上,还是研究的深度上,都有待加强。

参考文献(References)
[1] 陈 娟, 李春阳. 2014. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系. 应用与环境生物学报, 20(4): 743-750.
(Chen J, Li C Y. 2014. Sex-specific responses to environmental stresses and sexual competition of dioecious plants. Chinese Journal of Applied and Environmental Biology, 20(4): 743-750[in Chinese]).(1)
[2] 陈小梅, 危 晖, 林媚珍. 2014. 气候变化对雌雄异株植物影响的研究进展. 生态学杂志, 33(11): 3144-3149.
(Chen X M, Wei H, Lin M Z. 2014. Responses of dioecious plants to climate change: A review on the potential mechanisms. Chinese Journal of Ecology, 33(11): 3144-3149[in Chinese]).(1)
[3] 高 丽, 杨 劼, 刘瑞香. 2010. 不同土壤水分条件下中国沙棘雌雄株叶片形态结构及生理生化特征. 应用生态学报, 21(9): 2201-2208.
(Gao L, Yang J, Liu R X. 2010. Leaf morphological structure and physiological and biochemical characteristics of female and male Hippophae Rhamnoides subsp. sinensis under different soil moisture condition. Chinese Journal of Applied Ecology, 21(9): 2201-2208[in Chinese]).(5)
[4] 郭学民, 高忠明, 刘振林, 等. 2010. 美国红梣雄株和雌株茎导管分子的形态解剖比较. 林业科学, 46(8): 51-55.
(Guo X M, Gao Z M, Liu Z L, et al. 2010. Comparative anatomy of vessel elements in staminate and pistillate plants of Fraxinus pennsylvanica. Scientia Silvae Sinicae, 46(8): 51-55[in Chinese]).(2)
[5] 金 燕, 卢宝荣. 2003. 遗传多样性的取样策略. 生物多样性, 11(2): 155-161.
(Jin Y, Lu B R. 2003. Sampling strategy for genetic diversity. Biodiversity Science, 11(2): 155-161[in Chinese]).(1)
[6] 刘瑞香, 杨 劼, 高 丽. 2005. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化. 水土保持学报, 19(3): 148-151.
(Liu R X, Yang J, Gao L. 2005. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of Chinese Seabuckthorn and Russian Seabuckthorn under different soil water content. Journal of Soil and Water Conservation, 19(3): 148-151[in Chinese]).(2)
[7] 刘 芸, 钟章成, 王小雪, 等. 2010. 栝楼雌雄植株激素和多胺含量的比较. 园艺学报, 37(10): 1645-1650.
(Liu Y, Zhong Z C, Wang X X, et al. 2010. Comparison in contents of endogenous hormones and polyamines in female and male plants of Trichosanthes kirilowii. Acta Horticulturae Sinica, 37(10): 1645-1650[in Chinese]).(1)
[8] 马丽媛, 齐国辉, 李保国, 等. 2013. 黄连木雌、雄株内源植物激素和POD同工酶的比较. 植物科学学报, 31(3): 297-303.
(Ma L Y, Qi G H, Li B G, et al. 2013. Content of endogenous phytohormones and isoenzymes of peroxidase in male and female Pistacia chinensis plants Bunge leaves. Journal of Wuhan Botanical Research, 31(3): 297-303[in Chinese]).(2)
[9] 陶应时, 廖咏梅, 黎云祥, 等. 2013. 连香树雌雄株叶片形态及生理生化指标比较. 东北林业大学学报, 41(3): 18-19, 39.
(Tao Y S, Liao Y M, Li Y X, et al. 2013. Morphological-characteristics and physiological-biochemical indexes of male and female Cercidiphyllum japonicum. Journal of Northeast Forestry University, 41(3): 18-19, 39[in Chinese]).(3)
[10] 王白坡, 程晓建, 戴文圣, 等. 1999. 银杏雌雄株内源激素和核酸的变化. 浙江林学院学报, 16(2): 114-118.
(Wang B P, Cheng X J, Dai W S, et al. 1999. Changes of endogenous phytohormones and nucleic acids in male and female plants of Ginkgo biloba. Journal of Zhejiang Forestry College, 16(2): 114-118[in Chinese]).(1)
[11] 胥 晓, 杨 帆, 尹春英, 等. 2007. 雌雄异株植物对环境胁迫响应的性别差异研究进展. 应用生态学报, 18(11): 2626-2631.
(Xu X, Yang F, Yin C Y, et al. 2007. Research advances in sex-specific responses of dioecious plants to environmental stresses. Chinese Journal of Applied Ecology, 18(11): 2626-2631[in Chinese]).(1)
[12] 杨 鹏, 胥 晓. 2011. 青杨雌雄幼苗对主要矿质元素的吸收与分配差异. 植物研究, 31(2): 188-192.
(Yang P, Xu X. 2011. Differences in absorption and distribution of main mineral elements between male and female Populus cathayana seedlings. Bulletin of Botanical Research, 31(2): 188-192[in Chinese]).
[13] 杨 鹏, 胥 晓. 2012. 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响. 植物生态学报, 36(1): 81-87.
(Yang P, Xu X. 2012. Effects of waterlogging stress on the growth and physiological characteristics of male and female Populus cathayana seedlings. Acta Phytoecologica Sinica, 36(1): 81-87[in Chinese]).(2)
[14] 杨赵平, 刘 琴, 李志军. 2011. 胡杨雌雄株叶片的比较解剖学研究. 西北植物学报, 31(1): 79-83.
(Yang C P, Liu Q, Li Z J. 2011. Leaf Blade Comparative Anatomy between the Female and the Male of Populus euphratica Oliv. Acta Botanica Boreali-Occidentalia Sinica, 31(1): 79-83[in Chinese]).(3)
[15] 詹亚光, 纪丽丽, 亓 磊, 等. 2006. 水曲柳雌雄株酚类物质和几种氧化酶活性的比较. 林业科学, 42(7): 131-136.
(Zhan Y G, Ji L L, Qi L, et al. 2006. The phenolic substances and several oxydases in female and male plants for Fraxinus mandshurica. Scientia Silvae Sinicae, 42(7): 131-136[in Chinese]).(2)
[16] 张明如, 温国胜, 张 瑾, 等. 2012. 火炬树雌雄母株克隆生长差异及其光合荧光日变化. 生态学报, 32(2): 528-537.
(Zhang M R, Wen G S, Zhang J, et al. 2012. Differences in clonal growth between female and male plants of Rhus typhina Linn. and their diurnal changes in photosynthesis and chlorophyll fluorescence. Acta Ecologica Sinica, 32(2): 528-537[in Chinese]).(2)
[17] 赵延霞, 骆有庆, 宗世祥, 等. 2012. 不同沙棘品种雌雄株叶片解剖结构及抗旱性比较. 北京林业大学学报, 34(6): 34-41.
(Zhao Y X, Luo Y Q, Zong S X, et al. 2012. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn. Journal of Beijing Forestry University, 34(6): 34-41[in Chinese]).(1)
[18] Åhman I. 1997. Growth, herbivory and disease in relation to gender in Salix viminalis L. Oecologia, 111(1): 61-68.(1)
[19] Álvarez-Cansino L, Zunzunegui M, Díaz Barradas M C, et al. 2010. Physiological performance and xylem water isotopic composition underlie gender-specific responses in the dioecious shrub Corema album. Physiologia plantarum, 140(1): 32-45.(1)
[20] Aryal R, Ming R. 2014. Sex determination in flowering plants: Papaya as a model system. Plant Science, 217/218: 56-62.(1)
[21] Barradas M C D, Correia O. 1999. Sexual dimorphism, sex ratio and spatial distribution of male and female shrubs in the dioecious species Pistacia lentiscus L. Folia Geobotanica, 34(1): 163-174.(1)
[22] Barrett S C H, Hough J. 2013. Sexual dimorphism in flowering plants. Journal of Experimental Botany, 64(1): 67-82.(1)
[23] Barrett S C H, Yakimowski S B, Field D L, et al. 2010. Ecological genetics of sex ratios in plant populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1552): 2549-2557.(1)
[24] Boecklen W J, Price P W, Mopper S. 1990. Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology, 71(2): 581-588.(2)
[25] Cepeda-Cornejo V, Dirzo R. 2010. Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms. PloS One, 5(3): e9824.(2)
[26] Chen F, Chen L, Zhao H, et al. 2010a. Sex-specific responses and tolerances of Populus cathayana to salinity. Physiologia Plantarum, 140(2): 163-173.(2)
[27] Chen L, Zhang S, Zhao H, et al. 2010b. Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant, Cell & Environment, 33(10): 1767-1778.(2)
[28] Chen F, Zhang S, Jiang H, et al. 2011. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. Journal of Proteome Research, 10(9): 3944-3958.(2)
[29] Cornelissen T, Stiling P. 2005. Sex-biased herbivory: ameta-analysis of the effects of gender on plant-herbivore interactions. Oikos, 111(3): 488-500.(2)
[30] Correia O, Barradas M C D. 2000. Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecology, 149(2): 131-142.(2)
[31] Darwin C. 1877. The different forms of flowers on plants of the same species. John Murray.(1)
[32] Diggle P K, Di Stilio V S, Gschwend A R, et al. 2011. Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics, 27(9): 368-376.(1)
[33] Esfandiyari B, Davarynejad G H, Shahriari F, et al. 2012. Data to the sex determination in Pistacia species using molecular markers. Euphytica, 185(2):227-231.
[34] Freeman D C, Harper K T, Ostler W K. 1980. Ecology of plant dioecy in the intermountain region of western North America and California. Oecologia, 44(3): 410-417.(1)
[35] Guangxiu L, Wei Z, Tuo C, et al. 2009. Gender-specific carbon discrimination and stomatal density in the dioecious tree of Hippophate rhamnoides. South African Journal of Botany, 75(2): 268-275.(1)
[36] Gunter L E, Roberts G T, Lee K, et al. 2003. The development of two flanking SCAR markers linked to a sex determination locus in Salix viminalis L. Journal of Heredity, 94(2):185-189.(1)
[37] Isogimi T, Matsushita M, Watanabe Y, et al. 2011. Sexual differences in physiological integration in the dioecious shrub Lindera triloba: a field experiment using girdling manipulation. Annals of Botany, 107(6): 1029-1037.(1)
[38] Jiang H, Peng S, Zhang S, et al. 2012. Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance. Journal of Experimental Botany, 63(10): 3709-3726.(3)
[39] Jing S W, Coley P D. 1990. Dioecy and herbivory: the effect of growth rate on plant defense in Acer negundo. Oikos, 58(3): 369-377.(3)
[40] Laporte M M, Delph L F. 1996. Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia. Oecologia, 106(1): 63-72.(3)
[41] Li C, Ren J, Luo J et al. 2004. Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiologiae Plantarum, 26(2): 123-129.(1)
[42] Li C, Xu G, Zang R, et al. 2007. Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiology, 27(3): 399-406.(1)
[43] Li C, Yang Y, Junttila O, et al. 2005. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. Plant Science, 168(5): 1365-1370.(1)
[44] Li Y X, Wang X G, Yang C H, et al. 2013. Identification of a locus characteristic of male individuals of buffalo grass [Buchloe dactyloides (Nutt.) Engelm.] by using an RAPD marker. Genetics and Molecular Research: GMR, 12(3): 4070-2077.(1)
[45] Marshall J D, Dawson T E, Ehleringer J R. 1993. Gender-related differences in gas exchange are not related to host quality in the xylem-tapping mistleoe, Phoradendron juniperinum (Viscaceae). American Journal of Botany, 80(6): 641-645.(1)
[46] Montesinos D, Villar-Salvador P, García-Fayos P, et al. 2012. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytologist, 193(3): 705-712.(2)
[47] Nybakken L, Hérkkä R, Julkunen-Tiitto R. 2012. Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia. Physiologia Plantarum, 145(4): 551- 564.(1)
[48] Nybakken L, Julkunen-Tiitto R. 2013. Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change. Physiologia Plantarum, 147(4): 465-476.(1)
[49] Obeso J R. 2002. The costs of reproduction in plants. New Phytologist, 155(3): 321-348.(2)
[50] Peng S, Jiang H, Zhang S, et al. 2012. Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree physiology, 32(12): 1541-1555.(1)
[51] Renner S S, Ricklefs R E. 1995. Dioecy and its correlates in the flowering plants. Amherican Journal of Botany, 82(5): 596-606.(1)
[52] Retuerto R, Lema B F, Roiloa S R, et al. 2000. Gender, light and water effects in carbon isotope discrimination, and growth rates in the dioecious tree Ilex aquifolium. Functional Ecology, 14(5): 529-537.(1)
[53] Ruuhola T, Nybakken L, Julkunen-Tiitto R. 2013. Sex-related differences of two ecologically divergent Salix species in the responses of enzyme activities to atmospheric CO2 enrichment. Biologia Plantarum, 57(4): 732-738.(1)
[54] Semerikov V, Lagercrantz U, Tsarouhas V, et al. 2003. Genetic mapping of sex-linked markers in Salix viminalis L[J]. Heredity, 91(3): 293-299.(1)
[55] Sinclair J P, Emlen J, Freeman D C. 2012. Biased sex ratios in plants: theory and trends. The Botanical Review, 78(1): 63-86.(1)
[56] Tozawa M, Ueno N, Seiwa K. 2009. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra. Botany, 87(3): 315-323.(1)
[57] Ueno N, Kanno H, Seiwa K. 2006. Sexual differences in shoot and leaf dynamics in the dioecious tree Salix sachalinensis. Canadian Journal of Botany, 84(12): 1852-1859.(1)
[58] Ueno N, Seiwa K. 2003. Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree, Salix sachalinensis. Journal of Forestry Research, 8(1): 9-16.(1)
[59] Xing H C, She W, Luo Z Q, et al. 2009. Study on the relationship between sex differentiation and ethylene in ramie. Agricultural Sciences in China, 8(4): 418-423.(1)
[60] Xu X, Peng G, Wu C, et al. 2008a. Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiology, 28(11): 1751-1759.(1)
[61] Xu X, Yang F A N, Xiao X, et al. 2008b. Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, cell & environment, 31(6): 850-860.(2)
[62] Zhang S, Chen F, Peng S, et al. 2010a.Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in theresponses of Populus cathayana under drought stress. Proteomics, 10(14): 2661-2667.(3)
[63] Zhang S, Chen L, Duan B, et al. 2012. Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. Forest Ecology and Management, 275: 68-78.(4)
[64] Zhang S, Lu S, Xu X, et al. 2010b. Changes in antioxidant enzyme activities and isozyme profiles in leaves of male and female Populus cathayana infected with Melampsora larici-populina. Tree physiology, 30(1): 116-128.(2)
[65] Zhang S, Jiang H, Peng S, et al. 2011. Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. Journal of experimental botany, 62(2): 675-686.(3)
[66] Zhao H, Li Y, Duan B, et al. 2009. Sex-related adaptive responses of Populus cathayana to photoperiod transitionspce. Plant, Cell & Environment, 32(10): 1401-1411.(2)
[67] Zhao H, Xu X, Zhang Y, et al. 2011. Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species. Oecologia, 165(1): 41-54.(1)