文章信息
- 李金花, 刘喜荣, 卢孟柱, 刘长敏, 张绮纹
- Li Jinhua, Liu Xirong, Lu Mengzhu, Liu Changmin, Zhang Qiwen
- 黑杨派无性系不同冠层叶片性状变异和生长选择*
- Genetic Variation of Leaf Traits at Different Canopy Positions of Section Aigeiros Clones and Indirect Selection for Growth
- 林业科学, 2015, 51(1): 55-65
- Scientia Silvae Sinicae, 2015, 51(1): 55-65.
- DOI: 10.11707/j.1001-7488.20150106
-
文章历史
- 收稿日期:2014-04-01
- 修回日期:2014-05-23
-
作者相关文章
2. 河北省廊坊市林业局 廊坊 065000
2. Forestry Bureau of Langfang City, Hebei Province Langfang 065000
黑杨派(Section Aigeiros)在世界杨树(Populus)人工林栽培中占有重要经济地位,特别是美洲黑杨(P. deltoides)和欧美杨(P. ×euramericana)无性系,适生于我国大部分平原地区,被广泛用于速生丰产用材林建设(张绮纹等,2003; 徐纬英,1988)。杨树高产性状的选择和改良一直是育种研究的目标,与产量相关的形态和生理学性状在杨属内表现出丰富的遗传变异(Van Volkenburgh et al.,1996; Ceulemans et al.,1999; Dillen et al.,2010; Al Afas et al.,2007; Ferris et al.,2002; Heilman et al.,1996; Pellis et al.,2004; Bonhomme et al.,2008)。目前,发现仅有少数叶片形态和生理指标与杨树生长或产量密切相关,且具有较高的遗传力,可作为生长或产量选择的间接指标(Orlovic et al.,1998; Al Afas et al.,2006; Marron et al.,2005; 2006; 2007; Bunn et al.,2004; Dillen et al.,2008; 2009; Monclus et al.,2005; Rae et al.,2004; Ferris et al.,2002; Yu,2001)。叶片是光合作用的重要器官,叶绿素主要存在于叶肉栅栏组织中,栅栏组织厚度影响叶绿体数量和光合效率; 气孔是植物进行气体和水分交换的主要通道,对光合和生长有重要影响。相关研究认为,气孔特性(大小和密度)与产量密切相关(Ridge et al.,1986; Ceulemans et al.,1984; 1988; Orlovic et al.,1998; Al Afas et al.,2006; 2007;Dillen et al.,2010)。然而已有大多数研究是利用温室或大田1~2年生苗期(Ceulemans et al.,1987; Orlovic et al.,1998; Dunlap et al.,2001)及短轮伐期矮林(short rotation coppice,SRC)(Scarascia-Mugnozza et al.,1997; Bunn et al.,2004; Marron et al.,2005; 2006; Monclus et al.,2005; Rae et al.,2004)进行的,有些相关研究得出了不同的结论(Bunn et al.,2004; Dillen et al.,2008; 2009; Ceulemans et al.,1987; Orlovic et al.,1998; Al Afas et al.,2006; Monclus et al.,2005)。此外,杨树叶片解剖和形态性状因基因型、生长环境或叶片发育而异,随叶面、分枝和冠层水平而有变化(Ceulemans et al.,1984; 1988; Orlovic et al.,1998; Dillen et al.,2009; Ferris et al.,2002; Pearce et al.,2005; Al Afas et al.,2006; 2007)。关于不同无性系树冠上与产量相关的叶片解剖和形态性状变异的报道较少,仅有Al Afas等(2006; 2007)对毛果杨(P. trichocarpa)、毛果杨×美洲黑杨、毛果杨×香脂杨(P. balsamifera)、欧洲黑杨(P. nigra)和欧美杨5个种12个无性系3年生萌蘖林树冠上层和下层叶片解剖和形态性状做了系统的比较研究,利用黑杨派无性系开展的相关研究亦较少(李昌龙,2007; 李守勇,2001)。
本研究利用13个黑杨派无性系3年生人工林,对上、中、下3个冠层水平上叶片解剖性状、气孔特性和生长性状的变异及相关性进行分析,并用于对生长的间接选择研究,以提高选择效率和缩短育种周期。
1 材料与方法 1.1 试验材料张绮纹等(2003)于20世纪80年代从国外引进了一批黑杨派的美洲黑杨和欧美杨无性系,经长期区域试验,选出了36杨、50杨、107杨、108杨和Be杨等优良品种用于生产,2005年又引进了Br杨、La杨、Me杨、Ta杨和Ti杨等新无性系。本研究选择其中3个美洲黑杨和10个欧美杨共计13个无性系为试验材料(表 1)。
![]() |
试验地设在河北省廊坊市广阳区九州镇南北陈良种场(39°28′31″N,116°33′2″E),所处位置属于永定河流域,土壤类型为潮土,pH7.5~8.0。属半干旱半湿润的大陆性季风气候,四季分明,年均气温11.4 ℃,年均降水量590 mm,集中于夏季,无霜期183天,日照充分,气候温和。
1.3 试验设计2008年春采用2根1干、胸径大于2 cm的苗木营建无性系对比试验林,周围设置2个保护行。采用完全随机区组试验设计,5株×5行共计25株小区,3次重复,株行距3 m×5 m,总面积为2 hm2。常规抚育管理。
1.4 性状测定2008—2011年每年生长季结束后测定试验林各无性系胸径和树高。2010年6月从每个无性系各区组中分别选取2株生长发育正常的平均木共6株为标准株,将树冠依照自然分枝轮序从上至下依次分为上、中、下层3个水平; 每层在南面方向各选取代表性一级分枝,从枝条顶端起第6—9个叶片中选取1个成熟叶片,用无色指甲油涂在叶宽最大、靠近主脉处同一位置的正反两面,待稍干后将指甲油层从叶片上撕下,制成临时装片在光学显微镜下观测气孔数目和长度(Al Afas et al.,2006); 在靠近主脉两侧的基部切取5 mm×10 mm的长条,采用石蜡切片法制成永久切片,测定栅栏组织、海绵组织和叶片总厚度(表 2)(Al Afas et al.,2007)。
![]() |
利用Excel 2007和SAS 9.1版软件分别对数据进行录入和统计分析。树干材积的计算公式为式(1),方差分析的线性模型为式(2)和式(3)。
树干材积:
$$V = {{\rm{(DBH/200)}}^2} \times H \times 3.1416;$$ | (1) |
生长性状:
$${Y_i} = \mu + {C_i} + {\varepsilon _{ij}};$$ | (2) |
叶片性状:
$${Y_{ij}} = \mu + {C_i} + {P_j} + {C_i} \times {P_j} + {\varepsilon _{ijk}}。$$ | (3) |
式中: V为树干材积;DBH为胸径;H为树高;Yi和Yij分别为生长和叶片性状观测值的小区均值;μ为总体平均值;C表示无性系效应值;P为冠层位置效应值;C×P为无性系和冠层位置交互效应值;ε为误差。
2 结果与分析 2.1 生长性状13个无性系1~4年生生长性状(胸径、树高和材积)差异极显著(P<0.000 1),利用Scheffe法检验不同无性系间生长性状差异结果见图 1。生长量最大的无性系为Por杨,最小的为Ta杨,4年生单株平均胸径分别为14.02,10.04 cm,材积分别为0.37,0.163 m3。Por杨4年生单株平均胸径和材积比当前主栽品种107杨增加2.96%和8.8%,比108杨增加1.6%和2.8%。
![]() |
图 1 13个杨树无性系3年生和4年生生长性状均值比较
Fig. 1 General means and standard error on 3- and 4-year-old growth traits of 13 poplar clones图中所示为3次重复区组性状均值和标准误; 不同字母表示不同无性系间相同年龄相同性状间差异显著
(P<0.05),反之差异不显著
。下同。 Mean values of three replicates and S.E. bars are presented. Different letters within same trait at same age mean significant difference between clones (P<0.05), whereas the difference was not significant. The same below. |
根据3年生和4年生生长量(图 1),可将13个无性系分为3组: 第1组是Por杨、111杨、107杨和108杨,生长量较大; 第2组是36杨、50杨、Be杨、Br杨和Me杨,生长量中等; 第3组是Ta杨、Ti杨、109杨和La杨,生长量较小。
2.2 叶片性状 2.2.1 叶片解剖性状13个无性系在树冠上、中、下层的叶片栅栏组织、海绵组织厚度及叶片总厚度差异均为极显著(P<0.000 1),利用Scheffe法检验在各个冠层上不同无性系之间叶片栅栏组织、海绵组织厚度和叶片总厚度的差异(表 3)。除了108杨上层、36杨中层和Ti杨下层叶片栅栏组织厚度(90.35,94.90,88.2 μm)大于Me杨外,其他无性系各个冠层叶片栅栏组织厚度均小于Me杨(84.5,89.12,87.83 μm)。La杨下层叶片海绵组织厚度(84.18 μm)小于Me杨(93.55 μm),但La杨上层和中层叶片海绵组织厚度(100.57 μm和98.32 μm)最大。除了108杨上层叶片总厚度(199.93 μm)大于其他无性系外,Me杨中层和下层叶片总厚度(205.96 μm和205.6 μm)均大于其他无性系。
![]() |
在各个冠层上,La杨、Me杨和Ti杨叶片栅栏组织厚度小于海绵组织厚度,但对于其他无性系,除了107杨上层叶片栅栏组织厚度小于海绵组织厚度外,各个无性系各个冠层叶片栅栏组织厚度均大于海绵组织厚度。
2.2.2 气孔性状13个无性系各冠层叶片上表面和下表面气孔密度差异均为极显著(P<0.000 1),利用Scheffe法检验不同冠层不同无性系之间叶片上表面和下表面气孔密度的差异(图 2)。13个无性系各个冠层叶片下表面气孔密度均大于上表面,大多数无性系上层叶片上表面气孔密度大于中层和下层。各个冠层(上、中、下)叶片上表面气孔密度最大的为Ta杨(131.6,137.2,122.2 mm-2),其次是La杨(126.4,121.5,121.5 mm-2); 最小的为50杨(67.7,64.2,54.9 mm-2),其次是Por杨(76.0,63.2,54.5 mm-2)。上层叶片下表面气孔密度较大的为107杨、108杨、111杨、50杨和36杨,中层较大的为36杨、Ta杨、Be杨、107杨、Por杨、108杨、111杨和Ti杨,下层最大的为Be杨,其次为107杨、108杨、Br杨、Ti杨和La杨。
![]() |
图 2 13个无性系不同冠层叶片上表面和下表面气孔密度均值比较 Fig. 2 General means and SE of adaxial (SDd)and abaxial (SDb) stomatal densities of 13 clones at three canopy position |
13个无性系各冠层叶片上表面气孔长度和下表面气孔长度的差异均为极显著(P<0.000 1),利用Scheffe法检验不同冠层不同无性系之间叶片上表面和下表面气孔长度的差异(表 4)。大多数无性系各个冠层叶片上表面与下表面气孔长度相近,长度范围为20.21~23.01 μm。其中,对于Ti杨,除了下层叶片上表面气孔长度为22.6 μm外,其上层和中层均为最大(22.49 μm和23.28 μm),且其各个冠层(上、中、下)叶片下表面气孔长度也为最大(22.69,23.01,22.83 μm)。
![]() |
13个无性系生长性状(1~4年生胸径)与各个冠层叶片解剖性性状、气孔性状的相关系数见表 5。各个冠层叶片上表面气孔密度与1~4年生胸径之间均极显著负相关(P≤0.001),与4年生胸径之间相关关系见图 3,且中层叶片上表面气孔密度与3年生和4年生胸径的相关系数分别为-0.755和-0.736。上层叶片下表面气孔密度与2年生胸径之间正相关(P≤0.05),相关系数为0.402,但中层和下层的与1~4年生胸径之间相关关系不显著。此外,各冠层叶片上表面和下表面气孔长度、栅栏组织厚度和叶片总厚度与1~4年生胸径之间相关关系亦不显著,但中层叶片海绵组织厚度与1年生和3年生胸径之间负相关(P≤0.05),相关系数分别为-0.319和-0.339。
![]() |
![]() |
图 3 不同冠层叶片上表面气孔密度与4年生胸径的相关关系① Fig. 3 Relationship between 4-year-old DBH and adaxial stomatal density(SDd) at three canopy positions |
叶片3个解剖性状栅栏组织厚度、海绵组织厚度与叶片总厚度之间存在显著正相关(P≤0.001),在树冠上、中、下层上,叶片栅栏组织厚度与叶片总厚度的相关系数分别为0.840,0.893和0.933,海绵组织厚度与叶片总厚度之间相关系数分别为0.920,0.939和0.932。叶片4个气孔性状之间存在一定相关关系,叶片上表面与下表面气孔密度、上表面与下表面气孔长度之间存在正相关,中层和下层叶片下表面与上表面气孔长度之间相关系数最大,分别为0.900和0.844。叶片气孔长度与气孔密度之间存在负相关,下层叶片下表面与上表面气孔密度之间相关系数为-0.504,负相关关系最密切,其次是下层叶片上表面气孔长度与上表面气孔密度之间的相关系数(-0.451)。
叶片气孔性状与解剖性状之间存在一定的相关性。上、中和下层叶片上表面气孔密度与上层叶片海绵组织厚度的相关系数分别为0.588,0.569,0.556,与中层叶片海绵组织厚度的相关系数分别为0.426,0.481,0.383,上层和下层叶片上表面气孔密度与上层叶片总厚度的相关系数分别为0.352和0.322。中层叶片下表面气孔密度与下层的栅栏组织厚度之间存在负相关(r=-0.339),中层和下层的叶片下表面气孔密度与海绵组织厚度之间的相关系数分别为-0.413,-0.389,与叶片总厚度之间的相关系数为-0.449,-0.347。
2.4 性状主成分分析利用13个无性系各冠层叶片解剖性状和气孔性状与3年生和4年生胸径共计11个性状的均值进行主成分分析,结果表明,这11个性状主成分分析的前3个主成分的累积贡献率分别达82.7%,87.5%和88.3%,其中前2个主成分的累积贡献率分别为69.5%,69.5%和70.5%,以第1和第2主成分依照不同冠层作二维坐标图(图 4)。
![]() |
图 4 不同冠层叶片性状与3年和4年生胸径性状主成分分析的第一、二主成分坐标 Fig. 4 Distribution of 3- and 4-year-old DBH and leaf traits in PCA analysis at three canopy positions for 13 clones |
根据上述主成分分析的前2个主成分,求出13个无性系11个性状的2个综合指标值,作二维坐标图(图 5),可将13个无性系划分为3类: 第Ⅰ类为Por杨、111杨、107杨、108杨、36杨、50杨和Be杨,生长量大,一般地,叶片上表面气孔密度较小(例如50杨和Por杨最小),下表面气孔密度较大(例如上层107杨、中层36杨和下层Be杨最大),上表面和下表面气孔长度较小,海绵组织厚度较小(例如上层111杨、中层50杨和下层Be杨最小); 而第Ⅱ类和第Ⅲ类无性系的分类因为冠层的不同而异,根据生长与上层和中层叶片性状主成分分析结果,分为第Ⅱ类Br杨、Ti杨、109杨和第Ⅲ类Me杨、Ta杨、La杨,而根据生长与下层叶片性状主成分分析结果,分为第Ⅱ类Br杨、Ta杨和第Ⅲ类Me杨、Ti杨、109杨、La杨。第Ⅲ类无性系的生长量小,一般地,叶片上表面气孔密度较大(例如Ta杨和La杨最大),下表面气孔密度较小(例如Me杨和109杨最小),上表面和下表面气孔长度较大(例如Ti杨和La杨最大)。
![]() |
图 5 13个无性系的基于不同冠层叶片性状与3年和4年生胸径性状主成分分析的二维坐标 Fig. 5 PC1×PC2 of PCA analysis of 13 clones with 3- and 4-year-old DBH and leaf traits at three canopy positions |
本研究发现黑杨派无性系之间生长性状和叶片解剖结构(栅栏组织和海绵组织厚度)及气孔性状(密度和长度)存在显著变异,这与早先黑杨派内产量性状和叶片性状存在显著变异的研究结果(Orlovic et al.,1998; Ceulemans et al.,1984; 1987; Marron et al.,2005; 2007; Ferris et al.,2002; Al Afas et al.,2006; 2007)一致。Ceulemans等(1984)和Orlovic等(1998)对黑杨派美洲黑杨和欧美杨等无性系田间试验研究发现,所有无性系叶片栅栏组织厚度大于海绵组织厚度。Al Afas等(2006)发现青杨派(Section Takamahaca)和青杨派与黑杨派杂种不同冠层叶片厚度均大于黑杨派,所研究的大多数基因型在不同冠层叶片海绵组织厚度大于栅栏组织厚度,并且黑杨派无性系与其他无性系相比,其树冠上层叶片海绵组织厚度最小,这是因为其树冠上层叶片有2层栅栏组织。本研究对黑杨派美洲黑杨和欧美杨等13个无性系研究发现,大多数无性系在不同冠层上叶片栅栏组织厚度均大于海绵组织厚度,证实了Ceulemans等(1984)和Orlovic等(1998)的研究结果。
本研究还发现黑杨派13个无性系不同冠层上叶片下表面气孔密度均大于上表面气孔密度,这与Ceulemans等(1984)和Orlovic等(1998)的研究结果一致,也与Al Afas等(2006; 2007)利用杨树5个种12个无性系2个冠层的研究结果一致。Ceulemans等(1984)发现毛果杨叶片上表面无气孔。Al Afas等(2006; 2007)研究发现: 毛果杨叶片下表面气孔密度和长度最大; 美洲黑杨叶片气孔小,密度大; 欧洲黑杨气孔大,密度小; 欧美杨叶片气孔密度和长度介于两者之间; 据此认为无性系气孔性状的变异与无性系的亲本有关。杨树气孔性状的基因型变异表现出种的特异性,许多研究者认为这与分类有关,建议将气孔性状作为杨树分类和无性系鉴别的指标,用于各派的划分(Ceulemans et al.,1988; Ridge et al.,1986; Van Volkenburgh et al.,1996)。
3.2 叶片性状与冠层位置的相关关系许多研究表明光照对叶片性状如解剖性状和气孔性状有显著影响(Orlovic et al.,1998; Van Volkenburgh et al.,1996; Al Afas et al.,2006; 2007),不同分枝和冠层上叶片性状存在差异,树冠上层的叶片一般比下层的长且大(Al Afas et al.,2007),气孔密度也大于下层叶片(Al Afas et al.,2006)。Al Afas等(2006; 2007)研究发现3个欧美杨无性系在树冠上层叶片栅栏组织厚度大于下层,上层叶片气孔密度和长度均比下层叶片大。本研究发现黑杨派13个无性系树冠上、中、下层之间叶片性状存在差异,大多数无性系在树冠上层叶片栅栏组织、海绵组织厚度和叶片总厚度大于下层叶片,上层叶片气孔密度大于中层和下层叶片,与Al Afas等(2006; 2007)研究结果不同,这可能是由于本研究利用小密度的人工林,而不是大密度的短轮伐萌蘖林。
3.3 叶片与生长性状的相关关系产量是一个复杂性状,包括了形态、生理和生化因子,确定与高产相关的基因型和认识性状间相关关系,对于生长早期预测和选择以及加速育种进程具有决定意义,而每一个产量因子受不同基因调控,许多研究集中在杨树产量因子及其遗传分析方面,这些研究结果可用于优良基因型的选择(Yu,2001; Ceulemans et al.,1987; Orlovic et al.,1998)。Ceulemans等(1984)利用欧洲黑杨、毛果杨×美洲黑杨和欧美杨的研究发现,无论是叶片上表面还是下表面气孔密度与产量之间相关性不显著,而气孔长度与产量之间存在显著正相关。Orlovic等(1998)对苗圃1年生美洲黑杨和欧美杨无性系研究发现,叶片上表面气孔密度、栅栏组织厚度与生物量之间存在很强正相关,提出利用该相关性在苗圃进行无性系生物量选择。Al Afas等(2007)对杨树4个种12个无性系研究发现叶片下表面气孔密度与生物量显著正相关,而气孔长度与生物量相关性不显著。本研究对13个黑杨派无性系的研究发现,不同冠层上叶片上表面气孔密度与1~4年生胸径之间呈极显著负相关,树冠上层叶片下表面气孔密度与2年生胸径之间呈显著正相关,中层海绵组织厚度与1年和3年生胸径之间显著负相关,而气孔长度与生长性状相关性不显著,这些研究结果对于黑杨派育种中生长性状的间接选择指标研究具有重要意义。
[1] |
李昌龙.2007.美洲黑杨产量相关性状遗传变异研究.南京: 南京林业大学硕士学位论文. (Li C L. 2007. Study on genetic variation of yield related characters of Populus deltoides. Nanjing: MS thesis of Nanjing Forestry University[in Chinese]).( ![]() |
[2] |
李守勇.2001.黑杨无性系解剖、生理生化特性与早期选择相关性的研究.泰安: 山东农业大学硕士学位论文. (Li S Y. 2001. Anatomical,physiological and biochemical characteristics of hybrid poplar and their correlation with early clonal selection. Tai'an: MS thesis of Shandong Agricultural University.[in Chinese])( ![]() |
[3] |
徐纬英.1988.杨树.哈尔滨: 黑龙江人民出版社. (Xu W Y. 1988. Poplar. Harbin: People Publishing House of Heilongjiang Province.[in Chinese])( ![]() |
[4] |
张绮纹,李金花.2003.杨树工业用材林新品种.北京: 中国林业出版社. (Zhang Q W, Li J H. New cultivars of poplar industrial plantation. Beijing: China Forestry Publishing House.[in Chinese])( ![]() |
[5] |
Al Afas N, Marron N, Ceulemans R. 2006. Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. Environmental and Experimental Botany, 58(1-3): 279-286.(![]() |
[6] |
Al Afas N, Marron N, Ceulemans R. 2007. Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon. Annals of Forest Science, 64(5): 521-532.(![]() |
[7] |
Bonhomme L, Barbaroux C, Monclus R, et al. 2008. Genetic variation in productivity, leaf traits and carbon isotope discrimination in hybrid poplars cultivated on contrasting sites. Annals of Forest Science, 65(5): 503.(![]() |
[8] |
Bunn S M, Rae A M, Herbert C S, et al. 2004. Leaf-level productivity traits in Populus grown in short rotation coppice for biomass energy. Forestry, 77(4): 307-323.(![]() |
[9] |
Ceulemans R, Deraedt W. 1999. Production physiology and growth potential of poplars under short-rotation forestry culture. Forest Ecology and Management, 121(1/2): 9-23.(![]() |
[10] |
Ceulemans R, Impens I, Imler R. 1988. Stomatal conductance and stomatal behavior in Populus clones and hybrids. Canadian Journal of Botany, 66(7): 1404-1414.(![]() |
[11] |
Ceulemans R, Impens I, Steenackers V. 1984. Stomatal and anatomical leaf characteristics of 10 Populus clones. Canadian Journal of Botany, 62(3): 513-518.(![]() |
[12] |
Ceulemans R, Impens I, Steenackers V. 1987. Variation in photosynthetic, anatomical and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids. Canadian Journal Forestry Research, 17: 273-283.(![]() |
[13] |
Dillen S Y, Rood S B, Ceulemans R. 2010. Growth and Physiology//Jansson S, Bhalerao R P, Groover A T. Genetics and Genomics of Populus. Plant Genetics and Genomics: Crops and Models 8, Springer Science, Part 1: 39-63.(![]() |
[14] |
Dillen S, Marron N, Sabatti M, et al. 2009. Relationships among productivity determinants in two hybrid poplar families grown during three years at two contrasting sites. Tree Physiology, 29(8): 975-987.(![]() |
[15] |
Dillen S Y, Marron N, Koch B, et al. 2008. Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (P. deltoides ‘S9-2’ × P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ × P. trichocarpa 'V24'). Annals of Botany, 102(3): 399-407.(![]() |
[16] |
Dunlap J M, Stettler R F. 2001. Variation in leaf epidermal and stomatal traits of Populus trichocarpa from two transects across the Washington Cascades. Canadian Journal of Botany, 79: 528-536.(![]() |
[17] |
Ferris R, Long L, Bunn S M, et al. 2002. Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiology, 22: 633-640.(![]() |
[18] |
Heilman P E, Hinckley T M, Roberts D A, et al. 1996. Production physiology// Stettler R F, Bradshaw H D, Heilman P E, et al. Biology of Populus and its implications for management and conservation. Part II. Chap. 18. Ottawa, Ontario: National Research Council of Canada Research Press, 459-489.(![]() |
[19] |
Marron N, Ceulemans R. 2006. Genetic variation of leaf traits related to productivity in a P. deltoides × P. nigra family. Canadian Journal of Forest Research, 36(2): 390-400.(![]() |
[20] |
Marron N, Dillen S Y, Ceulemans R. 2007. Evaluation of leaf traits for indirect selection of high yielding poplar hybrids. Environmental and Experimental Botany, 61(2): 103-116.(![]() |
[21] |
Marron N, Villar M, Dreyer E, et al. 2005. Diversity of leaf traits related to productivity in 31 Populus deltoides × Populus nigra clones. Tree Physiol, 25(4): 425-435.(![]() |
[22] |
Monclus R, Dreyer E, Delmotte F M, et al. 2005. Productivity, leaf traits and carbon isotope discrimination in 29 P. deltoides × P. nigra clones. New Phytologist, 167(1): 53-62.(![]() |
[23] |
Orlovic S, Guzina V, Krstic B, et al. 1998. Genetic variability in anatomical, physiological and growth characteristics of hybrid poplar (P. ×euramericana Dode (Guinier)) and eastern cottonwood (P. deltoides Bartr.) clones. Silvae Genetica, 47(4): 183-190.(![]() |
[24] |
Pearce D W, Millard S, Bray D F, et al. 2005. Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiology, 26: 211-218.(![]() |
[25] |
Pellis A, Laureysens I, Ceulemans R. 2004. Growth and production of a short rotation coppice culture of poplar. I. Clonal differences in leaf characteristics in relation to biomass production. Biomass Bioenergy, 27(1): 9-19.(![]() |
[26] |
Rae A M, Robinson K M, Street N R, et al. 2004. Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar. Canadian Journal of Forest Research, 34(7): 1488-1498.(![]() |
[27] |
Ridge C R, Hinckley T M, Stettler R F, et al. 1986. Leaf growth characteristics of fast-growing poplar hybrids Populus trichocarpa × P. deltoides. Tree Physiol, 1(2): 209-216.(![]() |
[28] |
Scarascia-Mugnozza G E, Ceulemans R, Heilman P E, et al. 1997. Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Canadian Journal of Forest Research, 27(3): 285-294.(![]() |
[29] |
Van Volkenburgh E, Taylor G. 1996. Leaf growth physiology// Stettler R F, Bradshaw Jr. H D, Heilman P E, et al. Biology of Populus and its Implications for Management and Conservation. Ottawa: NRC Research Press, National Research Council of Canada, 283-299.(![]() |
[30] |
Yu Q. 2001. Can physiological and anatomical characters be used for selecting high yielding hybrid aspen clones? Silva Fennica, 35(2): 137-146.(![]() |