文章信息
- 许坛, 王华田, 朱婉芮, 王延平, 李传荣, 姜岳忠
- Xu Tan, Wang Huatian, Zhu Wanrui, Wang Yanping, Li Chuanrong, Jiang Yuezhong
- 连作杨树细根根序形态及解剖结构
- Morphological and Anatomical Traits of Poplar Fine Roots in Successive Rotation Plantations
- 林业科学, 2015, 51(1): 119-126
- Scientia Silvae Sinicae, 2015, 51(1): 119-126.
- DOI: 10.11707/j.1001-7488.20150114
-
文章历史
- 收稿日期:2013-09-27
- 修回日期:2014-12-10
-
作者相关文章
2. 国家林业局泰山森林生态系统定位研究站 泰安 271018;
3. 山东省林业科学研究院 济南 250014
2. Taishan Forest Ecosystem Research Station of State Forestry Administration Tai'an 271018;
3. Shandong Academy of Forestry Jinan 250014
大量调查数据说明纯林连栽将导致人工林生产力下降(Thomas,1957;O’Hehir et al.,2010)。我国是世界上人工林面积最大的国家,人工林面积已超过6.45×107 hm2,但当前主要的工业人工林均存在生产力低下的问题(盛炜彤,1992),究其原因可归咎于纯林连栽经营模式。这一问题已经引起了国家相关部门和林业工作者的高度重视,连作人工林衰退机制及长期生产力维持技术已成为林学学科研究的重要命题。
杨树(Populus spp.)是我国重要的速生用材树种之一,由于长期实施连作经营导致林分生产力下降(孙翠玲等,1995;刘福德等,2005;Fang et al.,2011)。针对这一问题,不少学者先后开展了连作杨树人工林衰退机制的研究(谭秀梅等,2008;王延平等,2010a;2010b;2011;杨阳等,2010;王华田等,2011),明确了土壤养分匮乏和化感效应在连作杨树人工林衰退中的地位和作用,初步构建了连作杨树人工林衰退机制概念模型。根系作为地上和地下部分的重要连接枢纽,在地下生态过程和地上生产力维持中发挥着重要作用。而细根(直径小于1 mm或2 mm)具有巨大的吸收表面积,是植物根系吸收功能的主要承载者,对森林生态系统生产力形成具有十分重要的作用。鉴于此,本研究在以往杨树人工林细根分布格局研究的基础上,探讨连作杨树人工林不同根序细根的形态和解剖特征,了解引起连作杨树人工林细根形态变化的可能因素及其与人工林生产力衰退的可能联系,为深入揭示连作杨树人工林衰退机制提供科学依据。
1 研究区概况研究区位于山东省泰安市宁阳县国有高桥林场(116°50′E,35°53′N)。该林场位于大汶河沿岸河滩地,土壤为粗沙质河潮土,颗粒较粗,保肥保水性差,有机质含量较低。年降雨量约800 mm,年均气温10 ℃,属典型的温带大陆性季风气候。试验林分为欧美杨107(Populus×euramericana ‘Neva’)Ⅰ代、Ⅱ代林,均为4年生纯林(2009年春季营造),株行距均为4 m×5 m。2种林分在营造第1,2年均曾间作花生,但当前林地无间作作物,无浇水、施肥等经营管理措施。林分生长及土壤状况见表 1。
![]() |
在Ⅰ和Ⅱ代林固定的试验样地内各设置3块1 000 m2标准地,标准地设置按照《森林生态系统长期定位观测方法》(LY/T 1952—2011)中关于标准地设置的规范进行。根据前期对杨树根系生长规律的观察,从4月份新叶展开时计算,待新根生长60天后,即6月份进行取样。取样时首先在各标准地内确定3株平均木,以平均木为中心设置圆形样块,按照前期对杨树根系分布规律的观察(李盼盼等,2013),在距离树干1 m半径内除去表层植被,在东西南北4个方向各用平板利铲挖取1个50 cm×50 cm面积内0~20 cm土层内的杨树根系,将获取的完整根系进行编号并迅速装入塑料袋置于冰盒内保存,对于不完整的根系和死根也分别编号放入另一塑料袋内带回实验室。
2.2 细根根序划分及形态学参数测定将获取的完整杨树细根(直径 < 2 mm)每株选择3个特征一致的单位根(要求分支自然,长度一致),用蒸馏水反复冲洗干净后进行根序分级。首先,用2~3 ℃的去离子水洗去根系上黏附的杂质,然后放在装有去离子水冰块的培养皿中,按照Pregitzer等(2002)和Luis等(2008)介绍的方法,在低温(2~3 ℃)下区分各等级细根。根序划分的原则是:根系最先端的根为1级根,其母根为2级根,2级根的母根为3级根,依此类推,一直区分到5级根。把同一林分、同一方向、同一级根序的根放在一起,分别用根系扫描仪进行扫描,并用分析软件获取不同根序细根根长、直径等参数。本研究中Ⅰ代林扫描1级根3 908个、2级根768个、3级根315个、4级根162个、5级根94个,Ⅱ代林扫描1级根7 102个、2级根1 265个、3级根449个、4级根198个、5级根110个。扫描完毕后将每个样品和剩余的细根在70 ℃烘干24 h后称干质量。
2.3 细根解剖学特征观测选取1级根20个、2级根20个、3级根15个、4级根10个、5级根10个,用FAA固定液固定,4 ℃冰箱保存。选取不同根序细根制作横剖面切片,在每张切片上选择6个点,显微镜观测各根序细根显微结构并照相,测定并记录不同根序细根剖面宽度、中柱(维管柱)直径和皮层厚度,计算中柱面积占根剖面面积的百分比。
2.4 数据统计与分析计算不同根序细根比根长(specific root length,SRL)、根组织密度(root tissue density,RTD)和根长密度(root length density,RLD)。其中,比根长为单位干质量细根的长度(m ·g-1);根组织密度为单位体积细根的干质量(g ·cm-3);根长密度为土体中单位取样面积的细根长度(m ·m-2);细根生物量为单位体积土壤中细根的干质量(g ·m-3)。采用One-way ANOVA分析同一根序不同林地间形态指标参数的差异,LSD分析不同根序间的差异显著性(P <0.05)。
3 结果与分析 3.1 细根生物量及根组织密度对不同根序细根生物量和根组织密度的统计发现,杨树细根生物量在不同根序之间分配差异较大(图 1)。1~5级细根中,生物量分配呈现随根序增加逐渐减少的趋势,其中Ⅰ和Ⅱ代林1~2级根分别占细根生物量的75.0%和86.8%。根组织密度则呈现随根序增加而增加的趋势,如Ⅰ代林3级根的组织密度为1级根的1.68倍,5级根则达到2.49倍。可见,杨树在低级根中生物量分配多,而在高级根中生物量分配少。此外,高级根根组织密度大,说明其组织结构致密,这与其细胞次生生长和老化现象严重有密切关系,也预示着其吸收功能逐渐下降。
![]() |
图 1 连作杨树人工林1~5级细根生物量和根组织密度 Fig. 1 Biomass and tissue density of fine root orders in poplar plantation |
杨树细根生物量在Ⅰ和Ⅱ代林相同根序之间存在差异。总体而言,Ⅱ代林细根生物量分配高于Ⅰ代林,如Ⅱ代林中1级根的生物量比例占73.8%,Ⅰ代林仅占56.1%,这说明连作将使杨树把更多的碳用于低级根生长,根组织密度也较大(图 1)。虽然3~5级细根生物量无显著差异,但其根组织密度表现为Ⅰ代林显著高于Ⅱ代林,这说明,Ⅰ代林高级根的生物活性仍高于Ⅱ代林。
3.2 细根根序形态对不同根序形态参数的统计(表 2)表明,杨树不同根序细根长度差异显著(P <0.05),Ⅰ代林中1级根总长度为300.1 cm,平均长度为2.3 mm;Ⅱ代林中1级根总长度则可达398.8 cm,但平均长度仅有1.68 mm;高级根的总长度呈现逐渐减小的趋势,而平均长度则逐渐增加。直径在不同根序细根之间差异并不显著(P>0.05),这可能是由于相同根序的细根直径变异较大引起的统计误差。从获取的不同根序直径数据来看,Ⅰ代林中1级根的直径为0.15~0.27 cm,变异系数为0.22;2 ~5级根的直径变异系数分别为0.17,0.14,0.13和0.11。在Ⅱ代林中,杨树相同根序细根的直径变异较小,变异系数为0.07~0.10。相同根序的杨树细根直径也有较大的变异,这在其他树种中也有发现(王向荣等,2005)。杨树不同根序细根表面积和根长密度的变化与其长度变化规律相似,不同根序间存在显著差异(P <0.05),低级根(1和2级)的表面积和根长密度显著大于高级根。
![]() |
对Ⅰ,Ⅱ代杨树人工林细根形态比较发现,连作将导致低级根总长度增大,Ⅱ代林细根有大量萌生现象,此结果与上述不同根序细根生物量的分配规律一致。同时,Ⅱ代林中低级根平均长度减少,说明其细根生长仍受一定程度抑制。另外,连作导致低级根表面积显著增大(P <0.05),如就1级根而言,Ⅱ代林是Ⅰ代林的1.93倍;但根体积仅在Ⅰ代林1级和2级根序中有显著差异,在Ⅱ代林中差异不显著(P>0.05)。从表 2中可以看出,Ⅰ代林低级根之间比根长的差异性显著高于高级根,如Ⅰ代林,1级根的比根长可达214.3 m ·g-1,2级根为161.6 m ·g-1,3级根则仅有118.5 m ·g-1。Ⅱ代林各级根序的比根长未达到显著水平,平均为99.3 m ·g-1。由于比根长和根长密度最能反映细根的吸收功能,因此可以推论,杨树3~5级根的吸收能力低于1和2级根,并且连作导致人工林中细根(尤其是1~2级细根)吸收功能下降。
3.3 细根根序解剖结构对不同根序细根解剖结构的研究表明,各根序横剖面宽度呈现逐渐增大的趋势,即高级根序横剖面宽度大于低级根(表 3)。这一规律基本呈现了各根序细根直径变化的特点,即高级根序由于其发育历程较长并伴有次生结构的形成,因此其横剖面宽度较大(即直径较大);相比之下,1,2级根解剖结构总体呈现初生结构的特征,直径较小。中柱直径变化规律也呈现出相似的特征,3~5级根中柱直径显著大于1,2级根(P <0.05);中柱面积占横剖面的比例也呈现随根序增加而增大的趋势,这可能与高级根的次生生长存在密切关系。
![]() |
对Ⅰ,Ⅱ代林细根解剖特征进行对比,发现连作杨树细根解剖特征与Ⅰ代林有显著差异,如细根横剖面直径表现为Ⅱ代林低级(1,2级)细根极显著高于Ⅰ代林,但高级(3~5级)根则显著低于Ⅰ代林(P <0.05);中柱直径也具有相同趋势,总体看来,中柱面积占横剖面面积的比例表现为Ⅱ代林显著高于Ⅰ代林(P <0.05)。根据细根横剖面的解剖特征观察发现,杨树1~3级细根最外层表皮细胞为1层,且极易脱落。脱落后表皮下相邻的1~3层皮层细胞壁逐渐木栓化,对细根起到保护作用。从3级根开始出现木栓层,并且皮层开始脱落,有初生和次生结构出现。4,5级根可见最外层包围的连续木栓层,同时大部分4级根及全部5级根无皮层残留。Ⅱ代林1级根表皮细胞也为1层,且皮层厚度比Ⅰ代林大;从2级根开始皮层开始出现脱落的现象,3~5级根出现连续的木栓层,并且5级根皮层开始完全脱落。
4 结论与讨论 4.1 杨树细根形态变化与连作人工林土壤养分有效性存在密切关系在连作人工林衰退机制研究中,林地土壤养分环境变化是诸多学者关注的重点。随着经营年限和连作代数增加,土壤中大量营养元素被消耗或随林木采伐转移出林地,因此连作人工林普遍存在土壤养分匮乏的现象(王延平等,2010c)。现有研究已经表明,N有效性对根系生长及构型具有重要调控作用(Osmont et al., 2007;Ruffel et al.,2011)。N素胁迫逆境能影响植物体内激素的合成,进而调控侧根的生长和发育(严小龙等,2007)。生长素几乎在所有侧根起始和发育过程中都具有重要作用(Aloni et al.,2006;Fukaki et al.,2007)。Gou等(2010)研究表明,GA缺乏型杨树转基因植株呈现出侧根明显增殖和伸长的趋势,这种效应可被外源GA所逆转,GA通过抑制杨树侧根原基的发生进而抑制侧根的形成;对侧根内源激素含量的测定表明,GA缺乏型杨树根内赤霉素(GA1和GA4)和脱落酸(ABA)含量都较对照极显著下降,而生长素(IAA)含量显著上调。可见,内源激素在调控侧根形成和发育过程中发挥着不同作用,将进一步影响植物根序的形态建成。杨树细根形态的变化可能与根系内源激素水平存在密切关系。本研究中Ⅱ代林细根平均长度显著低于Ⅰ代林,这可能因为连作导致N素有效性下降,进而导致GA含量上调、IAA含量下调的结果,对内源激素的检测可为探索土壤养分有效性变化对细根根序发育调控机制提供直接证据。值得注意的是,迄今为止关于陆地生态系统N素有效性的认识仍几乎完全建立在无机氮的基础上(Durán et al.,2013)。NH4+ -N和NO3- -N是植物可吸收利用的主要矿质N素形态,大量研究表明树木对NH4+ -N和NO-3-N这2种形态的N素离子吸收存在选择性(张彦东等,2003)。一般而言,针叶树对NH4+ -N有偏好,而阔叶树的偏好目前尚不完全清楚,杨树表现出对NH4+ -N的轻微偏好(Dickmann et al.,2001)。不同形态N素对根系生长的作用不同,NH4+ -N对根系生长有抑制作用,而NO3- -N则对根系生长有促进作用(Vollbrecht et al.,1992;Bauer et al.,2000),NO3- -N处理能显著增大杨树(Populus maximowiczii×P.balsamifera)的细根/粗根比、比根长以及根系对水分的吸收(Domenicano et al.,2011)。因此,在N素有效性与细根生长的关系研究中,区分NH4+ -N和NO3- -N这2种形态N素对根系生长的不同作用是十分必要的。
由于受不同研究方法的影响,迄今为止关于细根生长与N素有效性关系的结论也是多种多样的(Guo et al.,2008)。Nadelhoffer(2000)和郭大力等(2007)分别综述了当前有关细根生长与N素有效性关系的4种假说: 1)N素有效性对细根生长是正效应,对细根寿命是负效应(即N素有效性提高,细根生长量增加,但寿命缩短,周转加快);2)N素有效性对细根生长呈现负效应,对细根寿命呈正效应(即N素有效性提高,细根生长量下降,细根寿命延长,周转减慢);3)N素有效性对细根生长和寿命均有负效应(即N素有效性提高,细根生长量下降,寿命缩短,周转加快);4)N素有效性对细根生长和寿命均有正效应(即N素有效性提高,细根生长量增加,寿命也增长,细根周转下降)。从现有的研究结果来看,假说1和2得到了较多研究数据的支持,被认为是细根与N素有效性关系模型的主流假说。本研究结果表明,连作引起了杨树细根生长在不同根序之间具有显著差异,总体表现为Ⅱ代人工林细根生物量、长度、直径等均高于Ⅰ代林,但就平均长度、比根长等指标而言,则呈现低级根生长减小而高级根生长增多的规律。结合以往对连作杨树人工林土壤N素有效性逐渐下降的研究结果(刘福德等,2005;王延平等,2010c),本研究认为N素有效性对杨树细根生长的影响在不同根序之间存在一定差异,低级根对N素有效性的响应可能符合假说1的观点,N素有效性对高级根生长的影响可能更符合假说2。不可否认的是,由于土壤生态系统的复杂性,尤其是根-土界面的特殊性质(Jones et al.,2009),加之外界因素(如温度、水分等环境因子)的影响(Pregitzer et al.,2000;Finér et al.,2011),树木根系生长对土壤N素有效性的响应规律研究仍有大量工作需要进行。
4.2 连作杨树人工林生产力下降与细根形态和功能变化有关已有研究表明,不同根序细根形态结构存在差异,1级根在形态上均具有直径细、根短和比根长大的特点,而高级根则相反(Pregitzer et al.,2002;师伟等,2008;刘佳等,2010)。本研究结果也表明了这一规律。细根形态结构的变化决定了其功能的异质性,Hishi等(2005;2006)对日本扁柏(Chamaecyparis obtusa)1~3级根解剖结构的研究表明,2级以上的细根中普遍存在次生木质部,这是植物根系由吸收功能向运输功能转变的重要指示特征。在本研究中,随着根级数的增加,Ⅰ代林中杨树细根从3级根开始出现初生、次生结构和木栓层结构,直至4,5级根。连续木栓层的出现表明这些根序的细根已经不具备吸收根的功能,同时其寿命得到延长。同时,4,5级根的皮层逐渐脱落,到5级根皮层几乎完全脱落,这与卫星等(2008)对黄波罗(Phellodendron amurense)根序解剖特征的研究结果一致。此外,陈海波等(2010)研究水曲柳(Fraxinus m and shurica)细根在不同氮浓度下的解剖特征时发现,低氮导致细根横切面皮层细胞直径和皮层厚度增加,而高氮将导致皮层细胞直径减小和皮层厚度缩窄。在本研究中,连作导致1级根细胞维管柱直径和皮层厚度都明显增大,而且从2级根开始皮层提早脱落,3级根的维管束直径显著增大。这可能是由于1级根通过增加皮层的厚度来增加吸收表面积来适应土壤养分胁迫的结果,同时,3级以上根序的细根为了适应这种胁迫,通过增大维管柱的直径来提高根系运输功能来支持植株的生长。因此,杨树细根解剖学特征的变化与连作人工林土壤养分胁迫具有密切关系。
此外,细根周转要消耗大量的C,影响森林生态系统C分配格局,对生态系统生产力形成具有十分重要的作用。据估算,仅直径小于2 mm的细根每年周转1次,就要消耗全球陆地生态系统净初级生产力的33%,其中一些生态系统消耗的NPP更是超过50%(Gordon et al.,2000)。细根的周转取决于寿命,细根寿命越短,周转越快,根系对C的消耗也越多。研究表明,1级细根其寿命较短,根序较高的细根寿命较长(梅莉等,2004)。在本研究中,Ⅱ代人工林细根生物量分配高于Ⅰ代林,特别是在低级根的生物量分配中,Ⅱ代林1和2级根的生物量分别是Ⅰ代林的4.5和2.4倍,这说明Ⅱ代杨树将把更多的C分配用于低级根的生长。但低级细根寿命较短,周转很快,伴随细根的死亡,净初级生产力中大量C被消耗而转移进入土壤。从这个意义上来讲,细根周转越快,周转量越大,林木碳损失越大,地上部分生物量积累速率减小。可以推论,Ⅱ代人工林细根生物量在低级根中显著增加将对地上部分生物量的积累将造成不利影响,这是造成杨树人工林生产力下降的一个潜在因素。因此,开展杨树细根寿命及周转的研究将为深入揭示连作人工林生产力衰退机制具有十分重要的科学意义。
[1] |
陈海波, 卫星, 王婧, 等. 2010. 水曲柳苗木根系形态和解剖结构对不同氮浓度的反应. 林业科学, 46(2): 61-66. (Chen H B, Wei X, Wang J, et al. 2010. Morphological and anatomical responses of Fraxinus mandshurica seedling roots to different nitrogen concentrations. Scientia Silvae Sinicae, 46(2): 61-66 [in Chinese]).( ![]() |
[2] |
郭大力,范萍萍. 2007. 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 18(10): 2354-2360. (Guo D L, Fan P P. 2007. Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology, 18(10): 2354-2360 [in Chinese]).( ![]() |
[3] |
李盼盼, 王延平, 王华田, 等. 2013. 黄河冲积平原杨树人工林细根空间分布特征. 山东农业大学学报: 自然科学版, 44 (1): 61-65. (Li P P, Wang Y P, Wang H T, et al. 2013. Fine roots distribution pattern of Poplus deltoides plantations in yellow river fluvial plain. Journal of Shandong Agricultural University(Natural Science Edition), 44 (1): 61-65 [in Chinese]).( ![]() |
[4] |
刘福德, 姜岳忠, 王华田, 等. 2005. 杨树人工林连作效应的研究. 水土保持学报, 19(2): 102-105. (Liu F D, Jiang Y Z, Wang H T, et al. 2005. Effect of continuous cropping on poplar plantation. Journal of Soil Water Conservation, 19(2): 102-105 [in Chinese]).( ![]() |
[5] |
刘佳, 项文化, 徐晓, 等. 2010. 湖南会同5个亚热带树种的细根构型及功能特征分析. 植物生态学报, 34(8): 938-945. (Liu J, Xiang W H, Xu X, et al. 2010. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China. Chinese Journal of Plant Ecology, 34(8): 938-945 [in Chinese]).( ![]() |
[6] |
梅莉, 王政权, 程云环, 等. 2004. 林木细根寿命及其影响因子研究进展. 植物生态学报, 28 (4): 704-710. (Mei L, Wang Z Q, Cheng Y H, et al. 2004. A review: factors influencing fine root longevity in forest ecosystems. Chinese Journal of Plant Ecology, 28 (4): 704-710 [in Chinese]).( ![]() |
[7] |
盛炜彤. 1992. 人工林地力衰退研究. 北京: 中国科学技术出版社. (Sheng W T. 1992. Study on plantation productivity decline. Beijing: Chinese Science and Technology Press.[in Chinese])( ![]() |
[8] |
师伟, 王政权, 刘金梁, 等. 2008. 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32 (6): 1217-1226. (Shi W, Wang Z Q, Liu J L, et al. 2008. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Chinese Journal of Plant Ecology, 32 (6): 1217-1226 [in Chinese]).( ![]() |
[9] |
孙翠玲, 朱占学, 王珍, 等. 1995. 杨树人工林地力退化及维护与提高土壤肥力技术的研究. 林业科学, 31(6): 506-512. (Sun C L, Zhu Z X, Wang Z, et al. 1995. Study on the soil degradation of the poplar plantation and the technique to preserve and increase soil fertility. Scientia Silvae Sinicae, 31(6): 506-512 [in Chinese]).( ![]() |
[10] |
谭秀梅, 孔令刚, 王华田, 等. 2008. 杨树人工林连作土壤中酚酸类化感物质的累积规律及其对微生物群落的影响. 山东大学学报: 理学版, 43(1): 14-19. (Tan X M, Kong L G, Wang H T, et al. 2008. Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes. Journal of Shandong University(Natural Science), 43(1): 14-19 [in Chinese]).( ![]() |
[11] |
王华田, 杨阳, 王延平, 等. 2011. 外源酚酸对杨树水培幼苗硝态氮吸收利用的影响. 植物生态学报, 35(2): 214-222. (Wang H T, Yang Y, Wang Y P, et al. 2011. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana 'Neva'. Chinese Journal of Plant Ecology, 35(2): 214-222 [in Chinese]).( ![]() |
[12] |
王向荣, 王政权, 韩有志, 等. 2005. 水曲柳和落叶松不同根序之间细根直径的变异研究. 植物生态学报, 29(6): 871-877. (Wang X R, Wang Z Q, Han Y Z, et al. 2005. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations. Chinese Journal of Plant Ecology, 29(6): 871-877 [in Chinese]).( ![]() |
[13] |
王延平, 王华田, 姜岳忠, 等. 2011. 氮磷亏缺条件下杨树幼苗根系分泌酚酸的动态. 林业科学, 47(11): 73-79. (Wang Y P, Wang H T, Jiang Y Z, et al. 2011. Secretion dynamics of phenolic acids from poplar(Populus×euramericana'Neva') seedling roots under N, P deficiency conditions. Scientia Silvae Sinicae, 47(11): 73-79 [in Chinese]).( ![]() |
[14] |
王延平, 杨阳, 王华田, 等. 2010a. 连作杨树人工林根际微域中2种酚酸的吸附与解吸行为研究. 林业科学, 46(1): 48-55. (Wang Y P, Yang Y, Wang H T, et al. 2010a. Sorption-desorption of two phenolic acids in poplar rhizosphere soil in continuous cropping plantation. Scientia Silvae Sinicae, 46(1): 48-55 [in Chinese]).( ![]() |
[15] |
王延平, 王华田, 杨阳, 等. 2010b. 外源酚酸在杨树人工林土壤中的吸附与滞留动态研究. 水土保持学报, 24(2): 251-256. (Wang Y P, Wang H T, Yang Y, et al. 2010b. Study on adsorption and retention of exogenous phenolic acids in the soil of poplar (Populus deltoides Marsh) plantation. Journal of Soil and Water Conservation, 24(2): 251-256 [in Chinese]).( ![]() |
[16] |
王延平, 王华田, 谭秀梅, 等. 2010c. 杨树人工林品种更替连作与非更替连作根际效应的比较. 生态学报, 30(5): 1379-1389. (Wang Y P, Wang H T, Tan X M, et al. 2010c. Comparison on rhizosphere effect of cultivar alternation and non-a lternation continuous cropping poplar(Populus deltoides) plantation. Acta Ecologica Sinica, 30(5): 1379-1389 [in Chinese]).( ![]() |
[17] |
卫星, 刘颖, 陈海波. 2008. 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32(6): 1238-1247. (Wei X, Liu Y, Chen H B. 2008. Anatomical and functional heterogeneity among different root orders of Phellodedron amurense. Chinese Journal of Plant Ecology, 32(6): 1238-1247 [in Chinese]).( ![]() |
[18] |
严小龙, 廖红, 年海. 2007. 根系生物学: 原理与方法. 北京: 科学出版社. (Yan X L, Liao H, Nian H. 2007. Root biology: principles and methods.Beijing: Science Press.[in Chinese])( ![]() |
[19] |
杨阳, 王华田, 王延平, 等. 2010. 外源酚酸对杨树水培幼苗根系生长和形态发育的影响. 林业科学, 46(11): 73-80. (Yang Y, Wang H T, Wang Y P, et al. 2010. Effects of exogenous phenolic acids on root physiologic characteristics and morphologic development of poplar hydroponic cuttings. Scientia Silvae Sinicae, 46(11): 73-80 [in Chinese]).( ![]() |
[20] |
张彦东, 白尚斌. 2003. 氮素形态对树木养分吸收和生长的影响. 应用生态学报, 14(11): 2044-2048. (Zhang Y D, Bai S B. 2003. Effects of nitrogen forms on nutrient uptake and growth of trees. Chinese Journal of Applied Ecology, 14(11): 2044-2048 [in Chinese]).( ![]() |
[21] |
Aloni R, Aloni E, Langhans M, et al. 2006. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany (Lond.), 97(5): 883-893.(![]() |
[22] |
Bauer G A, Berntson G M. 2000. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiology, 21(2/3): 137-144.(![]() |
[23] |
Dickmann D I, Isebrands J G, Blake T J, et al. 2001. Physiological ecology of poplars//Dickmann D I. Poplar culture in North America. Ottawa: NRC Research Press, 77-118.(![]() |
[24] |
Domenicano S, Coll L, Messier C, et al. 2011. Nitrogen forms affect root structure and water uptake in the hybrid poplar. New Forests, 42(2): 347-362.(![]() |
[25] |
Durán J, Delgado-Baquerizo M, Rodríguez A, et al. 2013. Ionic exchange membranes (IEMs): a good indicator of soil inorganic N production. Soil Biology & Biochemistry, 57(2): 964-968.(![]() |
[26] |
Fang L, Yu J, Chen J L. 2011. Effect of continuous cropping on leaf nutrient and growth of different species of poplar plantation. Agricultural Science & Technology, 12(2): 224-227, 252.(![]() |
[27] |
Finér L, Ohashi M, Noguchi K, et al. 2011. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261(2): 265-277.(![]() |
[28] |
Fukaki H, Okushima Y, Tasaka M. 2007. Auxin-mediated lateral root formation in higher plants. International Review of Cytology, 256(1):111-137.(![]() |
[29] |
Gordon W S, Jackson R B. 2000. Nutrient concentrations in fine roots. Ecology, 81(1): 275-280.(![]() |
[30] |
Gou J Q, Strauss S H, Tsai C J, et al. 2010. Gibberellins regulate lateral root formation in populus through interactions with auxin and other hormones. Plant Cell, 22(3): 623-639.(![]() |
[31] |
Guo D L, Li H B, Mitchell R J, et al. 2008. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177(2): 443-456.(![]() |
[32] |
Hishi T, Takeda H. 2005. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtuse. New Phytologist, 167(2): 509-521.(![]() |
[33] |
Hishi T, Tateno R, Takeda H. 2006. Anatomical characteristics of individual roots within the fine-root architecture of Chamaecyparis obtusa (Sieb. & Zucc.) in organic and mineral soil layers. Ecological Research, 21(5): 754-758.(![]() |
[34] |
Jones D L, Nguyen C, Finlay R D. 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321(1/2): 5-33.(![]() |
[35] |
Luis R V, Vivianette V, Leah E R, et al. 2008. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95(12): 1506-1514.(![]() |
[36] |
Nadelhoffer K J. 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 147(1): 131-149.(![]() |
[37] |
O'Hehir J F, Nambiar E K. 2010. Productivity of three successive rotations of P. radiata plantations in South Australia over a century. Forest Ecology and Management, 259(10): 1857-1869.(![]() |
[38] |
Osmont K S, Sibout R, Hardtke C S. 2007. Hidden branches: developments in root system architecture. Annual Review Plant Biology, 58(8): 93-113.(![]() |
[39] |
Pregitzer K S, Deforest J L, Burton A J, et al. 2002. Fine root architecture of nine North American trees. Ecological Monographs, 72(2): 293-309.(![]() |
[40] |
Pregitzer K S, King J S, Burton A J, et al. 2000. Responses of tree fine roots to temperature. New Phytologist, 147(1): 105-115.(![]() |
[41] |
Ruffel S, Krouk G, Daniela R, et al. 2011. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences, 108(45): 18524-18529.(![]() |
[42] |
Thomas J. 1957. Growth problems of Pinus radiata in South Australia. Australia Forest, 21(1): 23-29.(![]() |
[43] |
Vollbrecht P, Kasemir H I. 1992. Effects of exogenously supplied ammonium on root development of Scots pine (Pinus sylvestris L.) seedlings. Botanica Acta, 105(4): 306-312.(![]() |