林业科学  2014, Vol. 50 Issue (6): 34-41   PDF    
DOI: 10.11707/j.1001-7488.20140605
0

文章信息

黄兴召, 陈东升, 孙晓梅, 张守攻
Huang Xingzhao, Chen Dongsheng, Sun Xiaomei, Zhang Shougong
基于异速参数概率分布的立木地上生物量估算
Estimation of Above-Ground Tree Biomass Based on Probability Distribution of Allometric Parameters
林业科学, 2014, 50(6): 34-41
Scientia Silvae Sinicae, 2014, 50(6): 34-41.
DOI: 10.11707/j.1001-7488.20140605

文章历史

收稿日期:2013-07-09
修回日期:2013-09-22

作者相关文章

黄兴召
陈东升
孙晓梅
张守攻

基于异速参数概率分布的立木地上生物量估算
黄兴召, 陈东升, 孙晓梅, 张守攻     
中国林业科学研究院林业研究所国家林业局林木培育重点实验室 北京 100091
摘要:对收集的80篇文献中304个地上部分生物量(M)和胸径(D)的异速生物量模型lnM=a+blnD数据集研究发现:模型参数ab符合二元正态分布;参数ab之间、参数b和纬度间呈负相关,并依此相关关系应用联立方程组建立参数ab随纬度变化的通用模型。以实测的北亚热带高山区日本落叶松地上部分生物量数据对新建的通用模型、最小二乘法和贝叶斯方法拟合生物量的适用性进行研究, 结果表明:虽然通用模型的拟合精度最低(R2为0.892),但可以根据植物生长的纬度实现无实测样地情况下的生物量估算。在拟合样本≥50时,最小二乘法和贝叶斯方法的拟合效果无显著差异;当拟合样本<50时,贝叶斯方法的拟合效果优于最小二乘法。因此在建模样本<50时,建议使用贝叶斯方法估测立木地上部分生物量。
关键词异速生物量模型    参数    概率分布    贝叶斯方法    
Estimation of Above-Ground Tree Biomass Based on Probability Distribution of Allometric Parameters
Huang Xingzhao, Chen Dongsheng, Sun Xiaomei, Zhang Shougong     
Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration Research Institute of Forestry, CAF Beijing 100091
Abstract: Allometric biomass equations are widely used to predict above-ground biomass in forest ecosystems. It found the distribution of the parameters a and b of the allometry between above-ground biomass (M) and diameter at breast height(D), lnM=a + blnD, well approximated by a bivariate normal from analysis a data of 304 functions of 80 papers. ANOVA was tested to parameters in seven genera. In contrast to the parameter a, there was significant difference in parameter b. There were negative correlation between the parameter a and b, the parameter b and latitude. From this negative correlation, simultaneous-equation was used to build general model for parameters which were changed by latitude. Three methods which include established general model, minimum-least-square regression and Bayesian approach were used to fitting the above-ground biomass of Larix kaempferi in sub-tropical alpine area. The result showed that general model was the lowest precise quantifications(R2=0.892), but it could estimate the biomass where forest situated in latitude without samples. With sample size was more than 50, both Bayesian method and minimum-least-square regression was no significant difference in the mean absolute error. And it was less than 50, Bayesian method was better than minimum-least-square regression. Therefore, it was suggested that Bayesian method was used to estimate above-ground biomass when the sample size was less than 50.
Key words: allometric biomass equations    parameters    probability distribution    Bayesian method    

在研究森林生长和生态系统动态变化过程中,生物量的估算和预测极为重要(Ter-Mikaelian et al.,1997Jenkins et al.,2003)。异速生物量模型作为估算森林生物量的常用方法,已被广泛应用于基础生态学和应用环境学的研究中(Zianis et al.,2005Návar,2009)。在已发表的文章中,许多学者应用该方法建立了不同区域、不同树种的立木地上部分生物量模型,但多数模型具有区域限制,基本上只适用于所采集数据区域(Ter-Mikaelian et al.,1997Zianis et al.,2004Návar,2009),因此建立通用的生物量模型成为当前研究的重点。West等(1997)Enquist等(1998)根据区域尺度代谢理论将模型参数假定为固定系数,估算了同一区域内不同树种的生物量; Brown(1997)Chave等(2005)应用类似的方法建立了热带树种的生物量模型。但实际上模型的参数是一个变量,如果将其作为固定参数来建立生物量模型,则掩盖了该区域内树种之间生物量的差异性(Muller-Landau et al.,2006),导致模型的预估精度偏低。因此分析模型参数的变化规律成为当前研究的重点之一(Hansen,2002Muller-Landau et al.,2006Snorrason et al.,2006Case et al.,2008曾伟生等,2012)。

要提高立木地上部分生物量模型的预测精度,就必须单独建模。一般来说,单独建模中样本数量越大,模型的预测精度和稳定性就越高,但是生物量测定费时费力,大量样本的采集会花费很多时间和金钱,因此一些学者开始探讨如何在少样本抽样的情况下来提高模型的稳定性和预测精度。Zianis等(2004)Zianis(2008)尝试使用少量样本建立立木地上部分的生物量模型。Zapata-Cuartas等(2012)以已有文献中关于立木地上部分异速生物量模型为先验信息,应用贝叶斯方法建立哥伦比亚热带森林立木地上部分的生物量模型,该方法是一个很好的尝试,在保证模型预估精度的基础上,降低了建模样本数量。

本文对以往应用异速生长方程建立地上生物量模型的文献进行整理,分析模型中参数的概率分布以及参数在不同属和纬度间的变化规律,根据参数分布建立通用的立木地上部分生物量模型,并以实测的北亚热带高山区日本落叶松(Larix kaempferi)地上部分生物量数据对新建的通用模型、最小二乘法和贝叶斯方法拟合生物量的适用性进行研究。

1 材料与方法 1.1 试验数据 1.1.1 文献数据收集

共收集80篇文献(附件1)中304个关于立木地上部分生物量和胸径之间的异速生物量模型数据,数据包含样地的经纬度、树种、模型参数a和b的值等,并对每一个模型数据的来源进行编码。80篇文献的建模区域基本覆盖了亚洲、欧洲、美洲和大洋洲(表 1),分布广泛。

表 1 80篇文献中异速生物量模型的数据分布统计 Tab.1 Summary of distribution in the dataset of allometric equations in 80 papers
1.1.2 适用性检验数据

以湖北、湖南和重庆亚高山地带实测的日本落叶松解析木数据为适用性检验数据,该数据由4个林龄段共102株立木的胸径和地上部分生物量组成(表 2)。试验地位于108°21′—116°07′E,29°05′—33°20′N之间,海拔1 500~2 000 m,属北亚热带季风气候。冬季寒冷湿润,夏季炎热高温。光照充足,热量丰富,无霜期长,降水丰沛,雨热同季,平均日照1 150~2 245 h,无霜期230~300天。

表 2 日本落叶松实测样木生物量统计 Tab.2 Summary of biomass sample of Larix kaempferi plantation
1.2 研究方法

异速生物量模型为:

$ \ln {M_i} = a + b{{\mathop{\rm lnD}\nolimits} _i} + {e_i}。 $ (1)

式中: Mi为第i株样本的地上部分生物量;Di为第i株样本的胸径;ab为方程参数;ei为误差项。

异速生物量模型参数求解主要有2种方法: 最小二乘法和贝叶斯方法。最小二乘法通过误差的平方最小化求解参数,其公式为:

$ minQ = min\sum\limits_{i = 1}^n {{{\left( {{M_i} - a - b{{{\mathop{\rm lnD}\nolimits} }_i}} \right)}^2} = \min Q\left( {a,b} \right)。} $ (2)

通过地上部分生物量的观测值Mi与估计值a+blnDi二者之差的平方和最小,从而求出参数ab

贝叶斯方法首先将式(1)中的参数a,b定义为θ,需要知道θ的概率密度函数(也就是给定某个θ值时,其总体的条件分布),然后根据θ的先验信息确定参数ab的先验分布πθ,再结合样本信息可得出后验分布π(θ|D),得出模型参数。其公式为:

$ \pi \left( {\theta /D} \right) = \frac{{\pi \left( \theta \right)f\left( {D/\theta } \right)}}{{\int {\pi \left( \theta \right)f\left( {D/\theta } \right)d\theta } }}。 $ (3)

模型拟合结果采用决定系数(R2)、估计值的标准误差(RSS)来评价:

$ {R^2} = 1 - RSS/TSS = 1 - {\sum\limits_{i = 1}^n {\left( {{y_i} - {{\hat y}_i}} \right)} ^2}/{\sum\limits_{i = 1}^n {\left( {{y_i} - \bar y} \right)} ^2}; $ (4)
$ RSS = {\sum\limits_{i = 1}^n {\left( {{y_i} - {{\hat y}_i}} \right)} ^2}。 $ (5)

数据统计分析和绘图使用R和Excel软件。在已知参数ab条件分布、均值、方差和协方差的情况下,应用R中的MCMCglmm包(马尔可夫链蒙特卡洛线性混合模型)对异速生物量模型的参数进行求解(Jarrod,2010)。

2 结果与分析 2.1 参数ab的分布特征

对收集的80篇文献中304个异速生物量模型的参数值进行分析,发现参数a,b的值完全不同; 即使相同树种,因建模区域不同,参数a,b的值也不相同。但是参数a,b在总体上符合二元正态分布,其均值分别为-2.114和2.357,方差为0.357和0.055,协方差为-0.114。从参数a,b散点的水平分布来看,a,b的变化范围分别在-3.5~-0.5和1.5~2.8之间(图 1)。

图 1 数据集中参数ab的分布 Fig. 1 Graphical summary of the parameters a and b of the complete dataset 上部为参数a的分布直方图,右部为参数b的分布直方图。中间为参数a,b的散点分布图,椭圆表示置信水平(从外到内是0.1~0.9,间隔为0.1)。Bars are frequency distributions for parameters a (top and x-axis) and b (right and y-axis). Data points of a and b showed the scatter diagram and elliptical confidence level (from outside to inside is 0.1 to 0.9 at intervals of 0.1).
2.2 不同属间参数ab的变化特征

整理的80篇文献中,栎属(Quercus)、桦木属(Betula)、杨属(Populus)、槭属(Acer)、桉属(Eucalyptus)、松属(Pinus)、云杉属(Picea)的异速生物量模型个数均>10,这7个属生物量模型总计达181个,占生物量模型总数的60%以上,其中栎属和松属的生物量模型个数超过30个。从上述分析中可以看出,以往对这7个属的树种研究较多,因此对这7个属生物量模型间的参数ab进行方差分析,发现参数a在不同属间无显著差异(P=0.201,P<0.01表示存在显著差异),参数b在阔叶(槭属、桉属、桦木属、栎属、杨属)和针叶(云杉属、松属)间存在显著性差异,而阔叶树之间、针叶树间均无显著差异(表 3)。

表 3 不同属对生物量模型参数ab的影响 Tab.3 Effects the parameter a and b on biomass model at different genus
2.3 不同纬度间参数ab的变化特征及通用模型的构建

通过分析文献中参数a,b与纬度的变化规律发现: 参数a与纬度相关性不大,参数b和纬度之间呈负相关(R=-0.282),并与参数 a也呈负相关(R=-0.681)。因此根据上述相关关系可以建立参数a,b与纬度间的回归方程。在建立回归方程时,由于参数b既是自变量又是因变量,因此通过联立方程组的方法,来解决参数估计的误差问题。模型形式如下:

$ \left\{ \begin{array}{l} b = {c_0} - {c_1}L,\\ a = {c_2} - {c_3}b。 \end{array} \right. $ (4)

式中:L表示纬度;c0c1c2c3表示方程参数。

拟合结果见表 4: 模型各参数的P值均小于0.01(P<0.01表示存在显著差异),决定系数(R2)为0.421,残差平方和(RSS)为22.682,拟合效果较好。因此该模型可以作为参数a,b的通用模型,在已知纬度值的情况下来估算生物量。

表 4 基于联立方程组a,b通用模型的参数拟合结果 Tab.4 General model of a and b fitted result by simultaneous-equation models
2.4 模型的适用性研究 2.4.1 通用模型、最小二乘法和贝叶斯方法拟合精度分析

采用建立的通用模型、最小二乘法和贝叶斯方法分别对102株日本落叶松实测数据进行拟合,结果见表 5。通用模型拟合的标准误差为0.787,决定系数为0.892,拟合效果低于最小二乘法和贝叶斯方法。通用模型方法的预估精度虽然较低,但其优点是不需要解析木数据,只需样地纬度即可估算出立木地上部分的生物量。最小二乘法和贝叶斯方法拟合式(1)后,其方程的标准误差和决定系数完全相同,均为0.186和0.984,而且模型中参数ab的值基本一致。

表 5 不同拟合方法对生物量估算的分析比较 Tab.5 Comparison of the different fitting methods on biomass estimation
2.4.2 贝叶斯和最小二乘法建模样本数量的分析

分别将样本数分为10,20,30,40,50,60,70,90,100株(9个等级),在每个等级下分别使用最小二乘法和贝叶斯方法进行1 000次无重复拟合,拟合结果如图 2: 随样本数的逐渐增加,2种方法拟合后参数a,b值的变化范围逐渐降低,表明模型的稳定性逐渐提高;但是贝叶斯方法参数a,b值随样本数的变化幅度较小,表明贝叶斯方法预测生物量时稳定性较高,参数的波动幅度不大。例如在使用10株样本时,最小二乘法拟合参数ab的值分别在-6.423~2.246,0.974~3.423,而贝叶斯方法拟合参数ab的值在-3.825~1.927,2.183~2.826,贝叶斯方法拟合后的参数变化范围远小于最小二乘法,表明在小样本时贝叶斯方法的预测稳定性明显好于最小二乘法。

图 2 不同样本数最小二乘法和贝叶斯方法参数ab拟合结果 Fig. 2 Simulation results for the parameters a and b using the Bayesian method and minimum-least-square with different sample sizes

平均绝对误差可以反映方程的预测精度。对不同样本下2种方法拟合的生物量模型的平均绝对误差进行方差分析,结果如图 3: 当样本数<50时,贝叶斯方法和最小二乘法拟合的平均绝对误差存在显著差异; 当样本数≥50时,差异不显著。以上分析说明在使用较少样本(样本数<50)时,贝叶斯方法的稳定性和拟合效果远大于最小二乘法; 随着样本量的增大(样本数≥50),贝叶斯方法和最小二乘法拟合后方程的稳定性和预测效果逐渐趋于一致。

图 3 不同样本数最小二乘法和贝叶斯方法平均绝对偏差的拟合情况 Fig. 3 Simulation results for the mean absolute error using the minimum-least-square and Bayesian method with different sample sizes 图中不同字母表示存在显著差异(P<0.05)。
The different letters show significant difference at P<0.05.
3 结论与讨论

本文收集了80篇文献共计304个关于地上部分生物量(M)和胸径(D)的异速生物量模型。虽然这些模型具有广泛的分布范围且是对不同树种或者不同区域相同树种的模拟,但模型参数a,b值的变化范围较小,波动幅度不大,总体符合二元正态分布。将80篇文献按照不同的属(栎属、桦木属、杨属、槭属、桉属、松属、云杉属)分为7个类型,对其模型参数a,b进行方差分析,结果表明参数a在属间差异不显著,参数b存在显著性差异,这种差异主要体现在阔叶树和针叶树之间。纬度作为影响参数值变化的重要因素,在分析参数随纬度变化规律的基础上,应用联立方程组建立了参数a,b和纬度间的通用模型,提供了一种不同纬度立木地上部分生物量估算的方法,同时也表明参数a,b不是固定值(Cienciala et al.,2005Snorrason et al.,2006Wang,2006Case et al.,2008Litton et al.,2008)。

应用建立的通用模型、最小二乘法和贝叶斯方法对北亚热带高山区的日本落叶松地上部分的生物量进行拟合,从拟合优度上来看,通用模型的精度比最小二乘法和贝叶斯方法差,但其优点是无须实测样地和样木,仅根据植物生长的纬度即可估算出生物量,适合应用于在较大尺度上估算生物量; 在全样本(102株样木)的拟合上,最小二乘法和贝叶斯方法的预估精度是一致的。通过不同的取样等级分析最小二乘法和贝叶斯方法对建模样本数量的需求,发现在建模样本≥50时,2种方法对生物量的拟合稳定性和预测效果无显著差异; 但在建模样本 时,贝叶斯方法的稳定性和拟合效果优于最小二乘法。

总之,通用模型通过纬度即可对立木地上部分生物量进行估算,但该方法会掩盖同一纬度带不同树种参数之间的差异性,导致生物量计算结果出现偏差,计算精度较差。贝叶斯方法首先需要已知参数ab的分布特征、均值和协方差矩阵,才可建立立木地上部分生物量模型,但其优点在于保证模型拟合的稳定性和预测精度,降低了建模样本数量,从而降低了外业调查成本。从本文研究结果来看,当建模样本 时,建议使用贝叶斯方法建立立木地上部分生物量模型,这将为不同立木生物量的计算及揭示其生物量之间的差异提供省时、省力的方法。

参考文献(References)
[1] 曾伟生,唐守正.2012.一个新的通用性相对生长生物量模型.林业科学,48(1):48-52.(1)
[2] Brown S.1997.Estimating biomass and biomass change of tropical forests: a primer.FAO,Rome,72-73.(1)
[3] Case B,Hall R J.2008.Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west central Canada.Canadian Journal of Forest Research,38(4):878-889.(2)
[4] Chave J,Andalo C,Brown S,et al.2005.Tree allometry and improved estimation of carbon stocks and balance in tropical forests.Oecologia,145(1):87-99.(1)
[5] Cienciala E,ČernýM,Apltauer J,et al.2005.Biomass functions applicable to European beech.Journal of Forest Science,51:147-154.(1)
[6] Enquist B J,Brown J H,West G B.1998.Allometric scaling of plant energetics and population density.Nature,395:163-165.(1)
[7] Hansen M.2002.Volume and biomass estimation in FIA: national consistency vs.regional accuracy.Proceedings of the Third Annual Forest Inventory and Analysis Symposium,GTR NC-230,North Central Research Station,Forest Service USDA,11:109-120.(1)
[8] Jarrod D H.2010.MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package.Journal of Statistical Software,33(2):1-22.(1)
[9] Jenkins J C,Chojnacky D C,Heath L S,et al.2003.National-scale biomass estimators for United States tree species.Forest Science,49(1):12-35.(1)
[10] Litton C M,Kauffman J B.2008.Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii.Biotropica,40(3):313-320.(1)
[11] Muller-Landau H C,Condit R S,Chave J,et al.2006.Testing metabolic ecology theory for allometric scaling of tree size,growth and mortality in tropical forests.Ecology Letters,9(5):575-588.(1)
[12] Návar J.2009.Biomass component equations for Latin American species and groups of species.Annals of Forest Science,66(2):208-216.(2)
[13] Snorrason A,Einarsson S F.2006.Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry.Icelandic Agricultural Sciences,19:15-24.(1)
[14] Ter-Mikaelian M T,Korzukhin M D.1997.Biomass equations for sixty-five north American tree species.Forest Ecology and Management,97(1):1-24.(2)
[15] Wang C K.2006.Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests.Forest Ecology and Management,222(1/3):9-16.(1)
[16] West G B,Brown J H,Enquist B J.1997.A general model for the origin of allometric scaling laws in biology.Science,276(5309):122-126.(1)
[17] Zapata-Cuartas M,Sierra C A,Alleman L.2012.Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass.Forest Ecology and Management,277:173-179.(1)
[18] Zianis D,Mencuccini M.2004.On simplifying allometric analyses of forest biomass.Forest Ecology and Management,187(2/3): 311-332.(2)
[19] Zianis D,Muukkonen P,Makipaa R,et al.2005.Biomass and stem volume equations for tree species in Europe.Silva Fennica Monographs,4:1-63.(1)
[20] Zianis D.2008.Predicting mean aboveground forest biomass and its associated variance.Forest Ecology and Management,256(6):1400-1407.Dipterocarp forests.Forest Ecology and Management,257(8):1684-1694.(1)
[86] 贺东北,骆期邦,曾伟生. 1998. 立木生物量线性联立模型研究.浙江林学院学报,15(3):298-303.
[87] 骆期邦,曾伟生,贺东北. 1999. 立木地上生物量模型的建立及其应用研究.自然资源学报,14(3):271-277.
[88] 尹艳豹,曾伟生,唐守正. 2010.中国东北落叶松立木生物量模型的研建.东北林业大学学报,38(9):23-26.
[89] 胥 辉,张会儒. 2002. 林木生物量研究.昆明:云南科技出版社,32-35.
[90] 曾伟生,张会儒,唐守正. 2011.立木生物量建模方法.北京:中国林业出版社,43-44.
[91] 张国斌,李秀芹,佘新松,等.2012.安徽岭南优势树种(组) 生物量特征.林业科学,48(5):136-140.
[92] Acosta- Mireles M,Vargas H J,Velazquez M A,et al. 2002.Estimacion de la biomasa aerea mediante el uso de relaciones alometricas en seis especies arboreas en Oaxaca, Mexico. Agrociencia, 36: 725-736.
[93] Alverea E. 1993. Composición florística, diversidad, estructura y biomasa de un bosque inundable en la Amazonia Colombiana. M.Sc.Thesis, Universidad de Antioquia,12:1-16.
[94] Arajuo T M,Higuchi N, Carvakho J A. 1999. Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para, Brazil. Forest Ecology and Management, 11(7): 43-52.
[95] Baldini S,Berti S, Cutini A,et al. 1989. Prove sperimentali di primo diradamento in unsoprassuolo di pino marittimo (Pinus pinaster Ait.) originato da incendio: aspetti silvicolturali, di utilizzazione e caratteristiche della biomassa. Ann 1st Sper Selvicoltura, 20:385-436.
[96] Barclay H J,Pang P C,Pollard F W. 1986. Aboveground biomass distribution within trees and stands in thinned and fertilized Douglas-fir. Canadian Journal of Forest Research,16(3): 438-442.
[97] Basuki T M,Van Laake P E,Skidmore A K,et al. 2009. Allometric equations for estimating the above-ground biomass in tropical Dipterocarp forests. Forest Ecology and Management,257(8):1684-1694.
[21] Bi H,Turner J,Lambert M J.2004.Additive biomass equations for native eucalypt forest trees of temperate Australia.Trees,18(4):467-479.
[22] Bond-Lamberty B,Wang C,Gower S T.2002.Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba.Can J For Res,32(8): 1441-1450.
[23] Bridge J A.1979.Fuelwood production of mixed hardwoods on mesic sites in Rhode Island.M.S.Thesis,University of Rhode Island,1:32-34.
[24] Brati M R,Wrann J H,Vita A A.1988.Efecto de la altura de corte en el rebrote de Acacia saligna(Labill.)H.Wendl.Cienciae investigacion Forestall-Instituto Forestal.Chile,12: 40-50.
[25] Brown S.1997.Los bosques y el cambio climatico: elpapel de los terrenos forestales como sumideros de carbono.Actas del XI Congreso Mundial Forestal: Recursos Forestales y Arboles,1: 11-17.
[26] Brown S.1997.Estimating biomass and biomass change of tropical forests: a primer FAO Forestry Paper no.134,Rome.Brown S,Lugo A E.Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon.Interciencia,17(1): 8-18.
[27] Brown S.1997.Estimating biomass and biomass change of tropical forests: a primer,Rome,FAO,134.
[28] Brown S.2002.Measuring carbon in forests: current status and future challenges.Environmental Pollution,116(3):363-372.
[29] Burner D M,Pote D H,Ares A.2006.Foliar and shoot allometry of pollarded black locust,Robinia pseudoacacia L.Agroforest Syst,68(1):37-42.
[30] Case B,Hall R J.2008.Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada.Can J For Res,38(4):878-889.
[31] Canadell J,Riba M,Anders P.1988.Biomass equations for Quercus ilex L.in the Montseny Massif,northeastern Spain.Forestry,61(2):137-147.
[32] ernýM.1990.Biomass of Picea abies(L.)Karst.in Midwestern Bohemia.Scandanavian Journal of Forest Research,5(1/4): 83-95.
[33] Chave J,Riéra B,Dubois M A.2001.Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability.Journal of Tropical Ecology,17(1):79-96.
[34] Chave J,Andalo C,Brown S,et al.2005.Tree allometry and improved estimation of carbon stocks and balance in tropical forests.Oecologia,145(1): 87-99.
[35] Cienciala E,ernýM,Apltauer J, et al.2005.Biomass functions applicable to European beech.Journal of Forest Science,51: 147-154.
[36] Colorado G J.2001.Ecuaciones de biomasa aerea de los arboles de los bosques secundarios del area de influencia de la central hidroelectrica.Thesis: Departamento de Ciencias Forestales,Universidad Nacional de Colombia,Sede Medellin,1-4.
[37] Crow T R,Blank R W.1978.Distribution of biomass and production for several northern woody species.Research Note NC-239,North central Forest Experiment Station,1-3.
[38] Diaz-Franco R,Acosta-Mireles M,Carrillo A F,et al.2007.Determinacion de ecuaciones alometricas para estimar biomasa y carbono en Pinus patula Schl.et Cham.Madera y Bosques,13(1): 25-34.
[39] Edwards J P,Grubb J P.1977.Studies of mineral cycling in a montane rainforest in New Guinea,I.The distribution of organic matter in the vegetation and soil.Journal of Ecology,65(3): 943-969.
[40] Guerra J C,Ganoso J A,Schlatter J V,et al.2005.Analisis e la biomasa de las raices en diferentes tipos de bosques: Avances de la evaluacion de Pinus radiata en Chile.Bosque(Valdivia),26(1):5-21.
[41] Gutiérrez V H,Zapata M,Sierra C,et al.2006.Maximizing the profitability of forestry projects under the clean development mechanism using a forest management optimization model.Forest Ecology and Management,226(1/3): 341-350.
[42] Hase H,Folster H.1982.Bioelement inventory of tropical(semi)evergreen seasonal forest on eutrophic alluvial soils,western Llanos,Venezuela.Acta Oecologica-Oecologia Plantarum,3: 331-346.
[43] Hein S,Spiecker H.2008.Crown and tree allometry of open-grown ash(Fraxinus excelsior L.)and sycamore(Acer pseudoplatanus L.).Agroforest Syst,73(3): 205-218.
[44] Higuchi N,Santos J,Ribeiro R.J,et al.1998.Biomassa da parte aerea de vegetacao de floresta tropical umida da Terra Firme de Amazonia Brasileira.Acta Amazonica,28(2): 153-165.
[45] Hochbichler E.2002.Vorläufige Ergebnisse von Biomasseninventuren in Buchen- und Mittelwaldbeständen//Dietrich H P,Raspe S,Preuhsler T.Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen.Freising: Forstliche Forschungsberichte München,1-4.
[46] Jenkins J C,Chojnacky D C,Heath L S, et al.2004.Comprehensive database of diameter-based biomass regressions for north American tree species.General Technical Report NE-319.USDA Forest Service Northeastern Research Station,1-48.
[47] Kenzo T,Furutani R,Hattori D,et al.2009.Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak,Malaysia.J For Res,14(6):365-372.
[48] Kenzo T,Ichie T,Hattori D,et al.2009.Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak,Malaysia.Journal of Tropical Ecology,25:371-386.
[49] Krumlik G.1974.Biomass and nutrient distribution in two old growth forest ecosystems in south coastal British Colombia.M.Sc.Thesis,University of British Columbia,32-49.
[50] Lescure J P,Puig H,Riera B,et al.1983.La phytomasse épigée d’une forêt denseen Guyane francaise.Acta Oecologia,4(3): 237-251.
[51] Litton C M,Kauffman J B.2008.Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii.Biotropica,40(3):313-320.
[52] MacLean D A,Wein R W.1976.Biomass of jack pine and mixed hardwood stands in northeastern New Brunswick.Canadian Journal of Forest Research,6(4):441-447.
[53] Mäkelä A,Vanninen P.1998.Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine.Canadian Journal of Forest Research,28(2):216-228.
[54] Montero M,Kanninen M.2003.Indice de sitio para Terminanalia amazonia en Costa Rica.Agronomia Costarricense,27(1):29-35.
[55] Montero M,Montagnini F.2004.Modelos alometricos para la estimacion de biomasa de diez especies nativas en plantaciones enlaregion de Atlantica de Costa Rica.Revista Forestal Centroamericana,30(1):36-47.
[56] Muukkonen P.2007.Generalized allometric volume and biomass equations for some tree species in Europe.Eur J Forest Res,12(6):157-166.
[57] Naidu S L,Delucia E H,Thomas R B.1998.Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine.Canadian Journal of Forest Research,28(8): 1116-1124.
[58] Nascimento H E M,Laurance W F.2001.Total aboveground biomass in central Amazonian rainforests: a landscape-scale study.Forest Ecology and Management,168(1/3): 311-321.
[59] Návar J.2009.Biomass component equations for Latin American species and groups of species.Annals of Forest Science,66(2):208-216.
[60] Nelson R F,Kimes D S,Salas W A,et al.2000.Secondary forest age and tropical forest biomass estimation using thematic mapper imagery.BioScience,50(5):419-431.
[61] Nogueria E M,Fearnside P M,Nelson B W,et al.2008.Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories.Forest Ecology and Management,256(11): 1853-1867.
[62] Oleksyn J,Reich P B,Chalupka W,et al.1999.Differential above- and below-ground biomass accumulation of european Pinus sylvestris populations in a 12-year-old provenance experiment.Scand J For Res,14(1): 7-17.
[63] Overmann J P,Witte H G,Aldarriaga J G.1994.Evaluation of regression models for aboveground biomass determination in Amazon rainforest.J Trop Ecol,10(2):363-369.
[64] Ovington J D,Olson,J S.1970.Biomass and checmical content of El Verde lower montane rain forest plants//Odum H T,Pigeon R F.A tropical rain forest: a study of irradiation and ecology at El verde,Puerto Rico.Springfield,Virginia: U.S.A.E.C.National Technical Information Service,11-14.
[65] Pimenta D,Domínguez G,Aguirre O,et al.2007.Estimación de biomasa y contenido de carbono de Pinus cooperi Blanco en Pueblo Nuevo,Durango.Madera y Bosques,13: 35-46.
[66] Rai S N,Proctor J.1986.Ecological studies on four rainforests in Kartnataka,India I.Environment,structure,floristics,and biomass.Journal of Ecology,74(2): 439-454.
[67] Rios-Carrasco E,Hoogh R,Navar J.2009.Projections of carbon stocks in sites reforested with pinyon pine species in northeastern Mexico.Arid Land Research and Management,23(4):342-358.
[68] Rodriguez Laguna R,Jiménez Pérez J,Aguirre C O,et al.2007.Ecuaciones alometricas paraestimar biomasa aérea en especies de encino y pino en Irurbide,N.L.Ciencia Forestal en Mexico,32:39-56.
[69] Salis S M,Assis M A,Mattos P P,et al.2006.Estimating the aboveground biomass and wood volume of savanna woodlands in Brazils Patanal wetlands based on allometric correlations.Forest Ecology and Management,228(1/3): 61-68.
[70] Scatena F N,Silver W,Siccama T,et al.1993.Biomass and nutrient content of the bisley experimental watersheds,luquillo experimental forest,puerto rico,before and after hurricane hugo,1989.Biotropica,25(1): 15-27.
[71] Schlegel B,Gayoso J,Guerra J.2001.Manual de procedimentos para inventarios de carbono en ecosistemas forestales.Proyecto FONDEF D98I1076,Universidad Austral de Chile,83.
[72] Segura M,Kanninen M.2005.Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica.Biotropica,37(1):2-8.
[73] Segura M,Kanninen M,Suárez D.2006.Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together.Agroforest Syst,68(2):143-150.
[74] Siccama T G,Hamburg S P,Arthur M A,et al.1994.Corrections to allometric equations and plant tissue chemistry for Hubbard Brook.Ecology,75(1): 246-248.
[75] Stangl R,Hochbichler E,Bellos P N,et al.2009.Allometric estimation of the above-ground biomass components of Alnus incana(L.)moench used for landslide stabilisation at Bad Goisern(Austria).Plant Soil,32(4): 115-129.
[76] Ter-Mikaelian M T,Korzukhin M D.1997.Biomass equations for sixty-five north American tree species.Forest Ecology and Management,97(1):1-24.
[77] Tritton L M,Hornbeck J W.1982.Biomass equations for major tree species of the northeast.General Technical Report NE-69,USDA Forest Service Northeastern Forest Experiment Station,45-46.
[78] Wang C.2006.Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests.Forest Ecology and Management,222(1/3):9-16.
[79] Whittaker R H,Bormann F H,Likens G E,et al.1974.The hubbard brook ecosystem study: forest biomass and production.Ecological Monographs,44(2):233-254.
[80] Whittaker R H,Niering W A.1975.Vegetation of the santa catalina mountains,Arizona V.Biomass,production,and diversity along the elevational gradient.Ecology,56(4): 771-790.
[81] Xiao C W,Ceulemans R.2003.Allometric relationships for below- and aboveground biomass of young scots pines.Forest Ecology and Management,203(1/3): 177-186.
[82] Young H E,Ribe J H,Wainwright K.1980.Weight tables for tree and shrub species in Maine.Miscellaneous Report 230,Life Sciencies and Agriculture Experiment Station,University of Maine at Orono,114-117.
[83] Zapata C M.2001.Ecuaciones de biomasa aerea para los bosques primarios del area de influence de la central hidroelectric Porce Ⅱ.B.Sc.Thesis,Universidad Nacional de Colombia,Sede Medellin,1-7.
[84] Zianis D,Mencuccini M.2004.On simplifying allometric analyses of forest biomass.Forest Ecology and Management,187(2/3): 311-332.
[85] Zianis D,Muukkonen P,Makipaa R,et al.2005.Biomass and stem volume equations for tree species in Europe.Silva Fennica Monographs,4:1-63.