﻿ 薄木层积材颈椎夹板构造机制及其弹性模量计算
 林业科学  2013, Vol. 49 Issue (8): 103-107 PDF
DOI: 10.11707/j.1001-7488.20130815
0

#### 文章信息

Zhang Yang, Ma Yan, Yang Chunmei

Mechanism of the Structure and Elastic Modulus Calculation of the Sliced Veneer Laminated Timber Cervical Splint

Scientia Silvae Sinicae, 2013, 49(8): 103-107.
DOI: 10.11707/j.1001-7488.20130815

### 作者相关文章

Mechanism of the Structure and Elastic Modulus Calculation of the Sliced Veneer Laminated Timber Cervical Splint
Zhang Yang, Ma Yan, Yang Chunmei
Forestry and Woodworking Machinery Engineering Centre, Northeast Forestry University Harbin 150040
Abstract: In modern biomedical technology, it is a more cutting-edge research to use biomedical materials as alternative materials for making medical assistance implements. In this paper, under the theory of modern cervical splint design, we researched the sliced veneer laminated timber cervical splint characteristics from micro-structure, and constructed a new sliced veneer laminated timber cervical splint. The paper gave the optimal size of sliced veneer of the molded cervical splint, and calculated the theoretical elastic modulus and its correlation coefficient which would impact its strength. Furthermore, we got the mechanical expression by deducing these the quantitative mathematical relation between the elastic modulus of coefficients and sliced veneer laminated timber cervical splint. This provided a basis for the micromechanics theory of cervical splint composite elastic mechanics, and provided experimental proofs.
Key words: cell    shaving    reconsitution    high compression ratio    heterotype molded cervical splint

1 薄木层积材颈椎夹板的构造

 图1 薄木细胞裂解形态 Fig.1 Cell rupture form of sliced veneer

 图2 薄木层积材及其断面结构 Fig.2 The sliced veneer laminated timber and its cross-sectional structure
2 薄木层积材的高压缩比形成机制

 图3 复杂的封闭微观状态的液压系统 Fig.3 Microscopic state of the complex closed hydraulic system diagram

 图4 加工成薄木后的细胞变化情况 Fig.4 Processed into sliced veneer cell changes

3 薄木最优参数加工的试验数据确定

 图5 落叶松进行超薄刨花加工后的图片 Fig.5 The pictures after larch wood processing of the ultra-thin shavings

 图6 毛白杨经过超薄刨花加工后的图片 Fig.6 Populus tomentosa processed through ultra-thin shavings picture
4 薄木层积材颈椎夹板弹性模量的理论分析

 $\left\{ {\begin{array}{*{20}{c}} {{\varepsilon _x} = \frac{1}{{{E_{xy}}}}({\delta _x} - {\lambda _{xy}}{\delta _y} - {\beta _\varepsilon }{\lambda _{xz}}{\delta _z})，}\\ {{\varepsilon _y} = \frac{1}{{{E_{xy}}}}(- {\lambda _{xy}}{\delta _x} + {\delta _y} - {\beta _\varepsilon }{\lambda _{xz}}{\delta _z})，}\\ {{\varepsilon _z} = \frac{1}{{{E_{xy}}}}(- {\lambda _{xy}}{\delta _x} - {\lambda _{xy}}{\delta _y} + {\beta _\varepsilon }{\delta _z});} \end{array}} \right.$ (1)
 $\left\{ {\begin{array}{*{20}{c}} {{\gamma _{xy}} = \frac{{2(1 - {\lambda _{xy}})}}{{{E_{xy}}}}{\tau _{xy}}，}\\ {{\gamma _{xz}} = \frac{1}{{{G_{xy}}}}{\tau _{xz}}，}\\ {{\gamma _{yz}} = \frac{1}{{{G_{xy}}}}{\tau _{yz}}} \end{array}} \right.$ (2)

 图7 刨花铺装的坐标关系 Fig.7 The shavings pavement coordinate relations

 ${E_{xy}} \approx {V_m}R{E_1}({w_1}L + {w_2}K)\approx 0.212{E_1}$ (3)

5 薄木层积材模压颈椎夹板弹性模量提高的微观力学解释

 ${E_{xy}} \approx {V_m}R{E_1}({w_1}L + {w_2}K)$ (4)

 $R = \frac{{100}}{{153}}{\rho _M}\Phi + 1$ (5)

 $\frac{{{C_y}}}{{{\upsilon _y}}} = \frac{{{V_m}}}{{{\upsilon _m}}};$ (6)
 ${C_g}{\upsilon _g} = K{V_m}{\upsilon _y}$ (7)

6 结果与展望

 图8 薄木层积材颈椎夹板试件 Fig.8 The sample pieces of heterotype molded cervical splint
7 结论

1)通过对薄木层积材颈椎夹板弹性模量的具 体参数分析，将微观力学和木材细胞学引入到薄木 层积材颈椎夹板的力学分析中，为新型医用颈椎夹 板的力学参数计算开辟了新的理论研究途径。

2)超薄薄木刨切技术将薄木的厚度加工成细 胞外径的0. 72 ～ 1. 25 倍，消除了木材细胞具有的碟 簧效应，去除了木材细胞空腔内物质并用重构压缩 的方式使薄木形成高压缩比和回弹性，可以比较容 易地加工出超过普通木材性能指标、高压缩比的异 型颈椎夹板。

3)加工过程中薄木层积材颈椎夹板弹性模量 会受到薄木片的尺寸、微米化程度、密度、孔穴压缩 变化率、施胶量、整体铺装状态、胶合程度以及压缩 比等因素的影响，并将这些影响因素与薄木层积材 颈椎夹板形成定量的数学关系与力学表达式，为薄 木层积材颈椎夹板的微观力学研究提供了理论 基础。

 [1] 陈艳飞. 2006. 生物医用钛合金显微组织和力学性能的研究. 哈尔滨: 哈尔滨工业大学硕士学位论文.(1) [2] 成俊卿. 1985. 木材学.北京:中国林业出版社,468-469.(1) [3] 科尔曼. 1991. 木材学与木材工艺学原理. 江良游, 译. 北京:中国林业出版社, 304-306.(1) [4] 马岩, 阿 伦. 2007. MFLB构成机理及孔穴压缩变化率对其力学性能的影响. 林业科学,43(6): 123-127.(1) [5] 马岩,杨春梅. 2006. 微米长薄片纤维切削加工功率的理论计算方法与效益分析. 林业科学,42(3): 44-47.(1) [6] 马岩. 1995. 重组木力学模型及刚度参数分析方法探讨.东北林业大学学报, 23(4): 107-111.(1) [7] 马岩. 2001. 纳微米科学与技术及在木材工业的应用前景展望.林业科学,37(8):109-113.(1) [8] 马岩. 2002a. 木材横断面六棱规则细胞数学描述理论研究.生物数学学报,17(1): 64-68.(1) [9] 马岩. 2002b. 微米木纤维定向重组细胞纤维含量的定量求解理论研究.生物数学学报, 17(3): 353-357.(1) [10] 马岩. 2003. 利用微米木纤维定向重组技术形成超高强度纤维板的细胞裂解理论研究.林业科学, 39(3)111-115.(1) [11] 马岩. 2005. 微米木纤维形成异型模压颈椎夹板的理论初探. 林产工业,32(7): 5-8.(1) [12] 马岩. 2006. 微米木纤维低密度轻质板制造技术探讨.木材工业,(4):19-21.(1) [13] 温变英. 2001. 生物医用高分子材料及其应用. 化工新型材料, 29(9):41-44.(1) [14] 战丽, 齐英杰, 马岩, 等. 2002. 重组木复合刨花板截面弹性模量求解方法的研究.木材加工机械,(2):8-11.(1) [15] 周忠礼. 2000. 纸壳夹板治疗小儿肱骨髁上骨折. 中国骨伤, 13(11):682-683.(1) [16] Hill C A S, Jones D. 1999. Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung, 53(3):267-271.(1) [17] Maekawa T, Fujita M, Saiki H. 1993. Characterization of cell arrangement by polar coordinate analysis of power spectral patterns. J Soc Mater Sci Jpn, 42(473):126-131.(1) [18] Singh A P, Daniel G. 2001. The S2 layer in the tracheid walls of Picea abies wood: inhomogeneity in lignin distribution and cell wall. Holzforschung, 55(4): 373-378.(1) [19] Watanabe U, Norimoto M, Ohgama T, et al. 1999. Tangential young's modulus of coniferous early wood investigated using cell models. Holzforschung, 53(2):209-214.(1) [20] Yoshioka T, Tsuru K, Hayakawa S, et al. 2003. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials,24(17):2889-2894.(1)