林业科学  2012, Vol. 48 Issue (9): 145-153   PDF    
0

文章信息

梁艳, 沈海龙, 李玉花, 杨玲, 杨晓杰
Liang Yan, Shen Hailong, Li Yuhua, Yang Xiaojie, Yang Xiaojie
植物体细胞胚胎发生中乙烯和多胺作用的研究进展
Role of Ethylene and Polyamines in Plant Somatic Embryogenesis
林业科学, 2012, 48(9): 145-153.
Scientia Silvae Sinicae, 2012, 48(9): 145-153.

文章历史

收稿日期:2012-02-06
修回日期:2012-05-14

作者相关文章

梁艳
沈海龙
李玉花
杨玲
杨晓杰

植物体细胞胚胎发生中乙烯和多胺作用的研究进展
梁艳1,2, 沈海龙3, 李玉花1, 杨玲3, 杨晓杰2    
1. 东北林业大学生命科学学院 哈尔滨 150040;
2. 齐齐哈尔大学生命科学与农林学院 齐齐哈尔 161006;
3. 东北林业大学林学院 哈尔滨 150040
摘要: 体细胞胚胎发生作为细胞全能性的一种表达方式,不仅在植物的遗传改良和产业化快速繁殖等方面有着重大实践意义,也是开展植物发育生物学理论研究的理想模型。综述多胺和乙烯在植物体胚发生过程中的作用及其分子作用机制的研究进展,主要涉及多胺和乙烯的合成分解代谢过程、体细胞胚胎发育在相关基因和蛋白质组学等方面的研究进展,为进一步深入了解体细胞胚的发生发育规律及基因调控机制以及建立植物高效再生体系提供参考。
关键词:体细胞胚胎发生    多胺    乙烯    
Role of Ethylene and Polyamines in Plant Somatic Embryogenesis
Liang Yan1,2, Shen Hailong3 , Li Yuhua1, Yang Xiaojie3, Yang Xiaojie2    
1. College of Life Sciences, Northeast Forestry University Harbin 150040;
2. School of Life Sciences and A & F, Qiqihar University Qiqihar 161006;
3. College of Forestry, Northeast Forestry University Harbin 15004
Abstract: Somatic embryogenesis is an expression mode of totipotency, it not only has important practical uses in genetic improvements and industrializing propagation, but also is an ideal research model for studying plant developmental biology.This paper reviewed progress of study on roles of polyamines and ethylene during plant somatic embryogenesis, the molecular mechanism mainly related to the biosynthesis catabolism of polyamines and ethylene, and somatic embryogenesis in the gene and proteomics research.The review could provide reference for further understanding the developmental patterns and gene regulation mechanism of somatic embryogenesis and for establishing efficient plant regeneration system.
Key words: somatic embryogenesis    polyamine    ethylene    

植物体细胞胚胎发生(somatic embryogenesis)是指体细胞在特定条件下,未经性细胞融合而通过与合子胚类似的发育途径形成新个体的形态发生过程(Haccis,1978)。体胚发生是植物界普遍发生的一种现象,其作为细胞全能性的一种表达方式,是开展植物发育生物学理论研究的理想模型,也为种质资源保存、快速繁殖、人工种子生产、转基因植物及突变体筛选等领域研究提供良好的实验体系。

植物组织培养中诱导体细胞胚发生的途径包括直接和间接2种方式:直接途径即在外植体上直接诱导分化出体细胞胚; 间接途径指外植体通过脱分化形成愈伤组织后,再由愈伤组织的细胞分化形成体细胞胚,间接的体细胞胚胎发生途径中主要包括胚性愈伤组织的诱导、胚性愈伤组织的保持和增殖、体细胞胚的成熟、萌发和植株再生。研究表明大多数植物的体胚发生途径为间接发生途径(崔凯荣等,2000)。

植物体细胞胚的发生与外植体、培养基、培养条件、植物生长调节剂等多种因素有关,其中植物生长调节剂的作用被认为是影响离体培养条件下体细胞向胚性细胞转变的重要诱导因子,研究表明除生长素、细胞分裂素、脱落酸外,乙烯(ethylene,ETH)和多胺类(polyamine,PAs)在植物体胚发育中也起着重要的调控作用(Kumar et al., 2008; Ptak et al., 2010; Mauri et al., 2011; Kepczynska et al., 2009a; 2011;Lu et al., 2011)。本文主要综述近年来PAs和ETH在植物体细胞胚胎发育过程中的调控作用及分子作用机制的研究进展,以期为今后从事植物的工厂化生产、基因组学、蛋白质组学、信息学等方面的研究提供参考。

1 ETH和PAs在植物体中的合成

ETH和PAs合成的相互关系见图 1

图 1 植物PAs与ETH生物合成的途径(Walden et al., 1997; Baron et al., 2008) Fig.1 Biosynthetic pathways of polyamines and ethylene in plants(Walden et al., 1997; Baron et al., 2008) ACC:蛋氨酸1-Aminocyclopropane-1-carboxylic acid; SAM: S -腺苷甲硫氨酸S-adenosylmethionine; dcSAM:脱羧硫腺苷甲硫氨酸Decarboxylated S-adenosylmethionine; SAMDC: SAM脱羧酶S-adenosylmethionine decarboxylase; ADC:精氨酸脱羧酶Arginine decarboxylase; ODC:鸟氨酸脱羧酶Omithine decarboxylase; SPDS:亚精胺合成酶Spermidine synthase; ACL5:热精胺合成酶Thermospermine synthase; SPMS:精胺合成酶Spermine synthase.

ETH和PAs的合成都是以SAM(S-腺苷甲硫氨酸)为前体。SAM在ACC合成酶(ACS)的作用下形成ACC,ACC在ACC氧化酶(ACO)作用下合成ETH; SAM也可在SAM脱羧酶(SAMDC)作用下脱羧进入PAs合成途径,作为氯基丙基的供体在亚精胺或精胺合成酶催化下与腐胺(putrescine,Put)作用分别形成亚精胺(spermidine,Spd)和精胺(spermine,Spm)。在植物体内ETH和PAs生物合成途径中存在对同一底物SAM的竞争,PAs可抑制植物体内ETH的生物合成。研究表明PAs可促进体胚发生与抑制乙烯的合成相关,添加乙烯抑制剂可促进植物体内PAs的合成,并促进体胚的发生,并且ETH、PAs及其他激素间相互作用共同调控体胚的发生(Bais et al., 2001; Bhatnagar et al., 2001; Puga-Hermida et al., 2006)。

2 ETH和PAs在植物体细胞胚发生中的作用 2.1 ETH在体胚发生中的作用

ETH在植物生长发育的每个阶段都起着重要的调控作用(Alonso et al., 2004; Dias et al., 2009)。近年来的研究表明,ETH作为一种植物生长调节剂在体胚诱导、成熟等过程中起着重要的作用,但ETH对体胚发生的影响因植物不同或材料的胚性强弱作用效果不同,多数学者认为抑制作用(Ammirato,1983; Kong et al., 1994; Bais et al., 2001; Huang et al., 2006; Kumar et al., 2007)大于促进作用(Nissen,1994; Hatanaka et al., 1995; Jha et al.,2007),也有研究表明ETH对植物体细胞胚发生的影响并不显著(Sauerbrey et al., 1987)。

Wann等(1989)的研究表明,在松属(Pinus)体胚发生的胚性细胞中ETH的合成速率比在非胚性细胞中的低; 落叶松(Larix)、黑云杉(Piceamariana)、白云杉(Picea glauca)等植物的研究结果也表明在高度分化的胚性细胞和组织中的ETH含量比非胚性细胞和组织及低再生能力的组织中的低(Kvaalen,1994; Li et al., 1996; El Meskaoui et al., 2000; 2001;Saly et al., 2002)。Lu等(2011)对欧洲赤松(Pinus sylvestris)的研究结果表明,具有较高体胚发生能力的细胞系在胚性愈伤组织增殖阶段产生较低量的ETH,而在体胚成熟阶段则产生更多的ETH; 此外,Saly等(2002)研究表明,落叶松的子叶期胚的成熟需要一定浓度的ETH,与上述研究结果一致。Mauri等(2011)对圣栎(Quercus ilex)体细胞胚发育早期、成熟、萌发等不同发育阶段产生ETH量进行测定,结果表明ETH量除在胚性愈伤组织、未成熟体细胞胚中含量高外,在次生胚发育过程中也很高,其中在次生胚发育早期(前10~15天)ETH量增加,而在随后的发育过程中ETH量降低,在体胚成熟、萌发阶段ETH量相对较低; Kepczynska等(2011)对紫花苜蓿(Medicago sativa)的研究也得到类似的结论。研究表明,内源ETH在植物体细胞胚发生过程中起到促进还是抑制作用主要取决于细胞系的胚性发生能力,胚性细胞系发生能力强的组织,如胚性愈伤组织、尚未成熟的体细胞胚、次生胚中会产生高水平的乙烯量,而在非胚性的愈伤组织及成熟胚(如子叶期胚)、萌发胚中则产生较低的乙烯量,这与大多数植物的合子胚发育过程中ETH的变化规律基本一致,从而进一步验证了体细胞在特定的条件下可以发生与合子胚类似的发育途径从而形成新个体的形态发生过程(Rodríguez-Gacio et al., 2004)。

另有研究表明,在植物离体培养中添加ETH抑制剂可调控体细胞胚的发生和发育,如AVG(氨基乙氧基乙烯甘氨酸aminoethoxyvinylglycine)、AOA(氨基氧乙酸aminooxyacetic acid)、MVG(甲氧基乙烯基甘氨酸methoxyvinylglycine)、AIB(氨基异丁酸α-aminoisobutyric acid)、Ag+、STS(硫代硫酸银silverthiosulfate)、DACP(重氮基环戊二烯diazocyclopentadiene)、NBD(2,5-降冰片二烯2,5-norbornadiene)、1-MCP(1-甲基环丙烯l-methylcyclopropene)等(Ptak et al., 2010; Lu et al., 2011; Kepczynska et al., 2009b; 2011;Kumar et al., 2008; Mauri et al., 2011; Saly et al., 2002)。研究表明,培养基中添加一定浓度(10~100 μmol·L-1)的AgNO3可促进玉米(Zea mays)、小麦(Triticum aestivum)、落叶松(Larix×leptoeuropaea)等植物体细胞胚和次生胚的发生(Saly et al., 2002; Hanai etal.,2010)。ETH合成前体ACC对于植物体胚发生的调控作用大小主要取决于植物种类的不同。Chen等(2003)外源添加低浓度(5~10 μmol·L-1)ACC抑制文心兰(Oncidium flexuosum)叶片直接的体胚发生,而高浓度(20~50 μmol·L-1)的处理则起到促进作用; 胡萝卜(Daucus carota)添加低浓度(10 μmol·L-1)的ACC促进鱼雷胚的形成,而高浓度(100 μmol·L-1)则起抑制作用(Ptak等(2010)的研究也表明在紫花苜蓿胚性愈伤组织培养中添加10 μmol·L-1ACC可增加ETH量,并促进体胚发生; 而Mauri等(2011)在橡树(Quercus ilex)的体胚成熟、萌发培养基中分别添加100 μmol·L-1ACC,结果发现体胚发生过程中乙烯量却没有显著的变化。另有研究表明在添加ETH形成酶抑制剂Co2+、Ni2+及ETH生物合成抑制剂SA(水杨酸salicylic acid)、BR(油菜素内脂brassinosteroids)、ABA(脱落酸abscisic acid)、MeJA(茉莉酸甲酯methyljasmonate)、AVG、1-MCP、NBD、AOA、STS等物质时会促进植物体胚的发生(Roustan et al., 1989; Pullman et al.,2003;Kepczynska et al., 2009b; 2011;Ptak et al., 2010); 此外,在体胚诱导过程中添加KMnO4或HgClO4作为乙烯的吸收剂调控ETH量也可调控体胚发生,但效果不明显(Kepczynska et al., 2009b)。

ETH对体胚的形态发生具有抑制与诱导的双重作用,ETH在体胚发生中起促进或者抑制作用主要取决于物种和基因型的不同,体胚形成过程中ETH可能与内源生长素、细胞分裂素、脱落酸等激素间共同作用调控体胚的形成与发育(Biddington,1992; Hutchinson et al., 1997),ETH也可通过一个可逆的反应降低ACC合酶来阻止自身的合成(Peck et al., 1998)。然而目前对于ETH在离体培养条件下植物生理发育过程、器官、合子胚和体细胞胚发育的研究仍然很少,如对于体胚发育过程中球形胚、鱼雷胚、心形胚、子叶胚不同阶段的ETH量跟踪的研究还有待于开展。

2.2 PAs在植物体细胞胚发生中的作用

PAs指精胺(spermine,Spm)、亚精胺(spermidine,Spd)、腐胺(putrescine,Put)、尸胺(cadaverine,Cad)和二氨基丙烷(1,3-diaminopropane,Dap)等普遍存在于植物界的一类小分子脂肪族化合物,可与带负电荷的核酸、酶、蛋白质及细胞功能团结合参与DNA、RNA和蛋白质代谢的调节,经证实,PAs在植物的体细胞胚发育过程中起重要的调控功能外,还具延缓植物衰老、促进花芽分化、提高植物对生物与非生物胁迫效应等功能(Seiler et al., 2005; alcázar et al., 2006; Kusano et al., 2008; Baron et al., 2008)。体胚发生需要植物体内维持良好的多胺类物质的平衡,并且PAs含量的升高被认为是体细胞胚发生的前提,植物激素对体胚发生的影响实际上是通过PAs介导的,其中PAs起到“第二信使”的作用(Galston,1983)。PAs作用的研究表明在植物体细胞胚胎发生初期(多细胞原胚时期)及成熟阶段(球形胚、心形胚、鱼雷胚及子叶胚时期),各种内源PAs含量均发生不同程度的变化(Santanen et al., 1992; Minocha et al., 1993; Harsh et al., 2001; Sridevi et al., 2009; Mauri et al., 2011)。

Mauri等(2011)的研究表明在橡树的胚性愈伤组织、未成熟体细胞胚和合子胚中全胺含量高于成熟胚和萌发胚,在未成熟的体细胞胚和未成熟的合子胚中Put含量高于成熟胚和萌发胚,Spm含量则是在胚性愈伤组织和未成熟合子胚中高于成熟胚; 但也有研究表明,Put在植物体胚成熟衰老阶段含量较高,而分生组织中则以Spd含量高为特征(Cvikrová et al., 1998)。Kumar等(2008)研究表明在咖啡(Coffea canephora)的胚性愈伤组织中Spm、Spd的含量均明显高于非胚性愈伤组织,而Put水平差异不大,并提出Spm的积累是从愈伤组织向胚性细胞系转变所必需的。对于胡萝卜体胚成熟过程中PAs的研究表明,在体细胞胚胎形成早期PAs含量较低,而球形胚、心形胚到鱼雷形胚时期,Spm和Spd逐渐升高,心形胚时期以Put为主,鱼雷胚期Spd含量最高(Montague,1979; Santanen et al., 1992)。随着PAs研究的不断深入,学者相继开展在体胚发育过程中不同类型PAs间协作效应的研究,研究表明,保持高比例的Put/(Spd+Spm)有利于胚性细胞的产生(Nabha et al., 1999; Niemi et al., 2002; Yadav et al., 1998; Shoeb et al., 2001)。

鉴于PAs在体胚发生中的重要调控作用,学者开展了外源添加PAs及PAs合成抑制剂来探讨其在植物体胚发生中的作用。有研究表明,外源添加PAs(30~50 mmol·L-1 Put)促进体胚的发生,外源添加PAs能抵制多胺抑制剂的作用使内源PAs恢复到正常水平(Kumar et al., 2008; Bais et al., 2001); 在体胚诱导培养基中添加外源Spd有利于人参(Panax ginseng)的体胚发生(Monteiro et al., 2002); 添加多胺合成抑制剂DFMO(DL-α-二氟甲基鸟氨酸)(1 mmol·L-1)和DFMA(DL-α-二氟甲基精氨酸)(1 mmol·L-1)、CHA(环己胺)(0.03mmol·L-1)、MGBG(甲乙二醛-双醚基腙)(1.35μmol·L-1),体胚发生率均明显降低(Kumar et al., 2008)。研究表明外源PAs对体胚发生的作用除取决于植物种类及内源PAs等因素之外,还受到它们如何被吸收、运输及降解等方面的影响(Bastola et al.,1995)。

PAs在体胚发生中的决定作用主要是由于在体胚发生过程中ADC(精氨酸脱羧酶argininedecarboxylase)和ODC(鸟氨酸脱羧酶omithinedecarboxylase)途径对于内源PAs的影响,在胚性细胞系中这2个途径的活性相对非胚性细胞系强,球形胚发育阶段这2个途径活性强,在鱼雷胚和子叶胚阶段活性则降低(Loukanina et al., 2008)。

由于PAs和ETH的生物合成以SAM为共同的前体,PAs和ETH生物合成的相互作用可以共同调控体胚的发生和发育。如体胚发生时,多胺合成抑制剂MGBG能促进ETH产生,同时影响愈伤组织形成与增殖并降低体胚发生频率; ETH合成抑制剂氨基氧乙酸、硝酸银等处理可通过增加PAs量而促进体胚发生(Helleboid et al., 1995; Kumar et al., 2008)。

尽管各类植物激素对植物的生理作用具有相对专一性,但实际上植物发生的各种生理反应是不同种类植物激素相互作用的结果。体胚发生过程中,植物激素的平衡是调控胚胎发育的重要条件,许多植物的体胚发生需要生长素、细胞分裂素、脱落酸、乙烯、多胺等多种激素的协作调控,其中调控作用较大的为生长素、细胞分裂素、脱落酸(Thoma et al., 2004; Rensing et al., 2005),因此学者开展这几类激素的研究也较多,调控作用和分子机制阐述的更为深入,而对于PAs及ETH在植物体胚发生中的调控作用研究较少。

3 PAs和ETH在植物体细胞胚发生中的分子作用机制

PAs和ETH的合成代谢途径目前已基本揭示(图 1),PAs、ETH生物合成相关酶的基因已被鉴定,并检测到体胚发育过程中的特异蛋白。研究表明,植物激素在植物体胚发生中的作用机制为激素先与其受体结合,从而引起受体蛋白的构象或形式的改变,激活后的受体将引起某些特定反应,如特定蛋白的磷酸化和去磷酸化、离子的吸收和释放,从而引起一系列的连锁反应,诱导特定基因的表达(余叔文等,2003)。近年来学者相继开展激素作用的最初部位、激素合成和分解代谢、激素的信号传导途径等方面的研究,从而进一步揭示激素调控体胚的内在分子机制。

体细胞胚胎发育过程中涉及一系列内部信号和外部刺激感知开关的调控,植物在感应信号并将信号传导至下游途径后,最终由单个细胞发生向体胚细胞的转变,该过程涉及特定基因的表达(Feher et al.,2003;Stasolla et al., 2004)。此外,利用相应突变体进行研究也成为分离鉴定体胚发育相关基因并阐明其生物学功能的有效手段(Linkiewicz et al., 2004)。目前已鉴定的调控植物体胚发育的基因主要包括:调控细胞周期和细胞壁组成的基因,如KIESEL基因(Steinborn et al., 2002)、SEPRs基因家族等(Stasolla et al., 2004); 信号转导途径的基因,如体细胞胚胎发生受体类激酶(SERKs)(Singla et al.,2008)、钙调蛋白信号转导相关基因CDPKs(Kiselev et al., 2008),体胚发生中转录因子,如LEC基因(Chiappetta et al., 2009)等; 激素诱导的基因,包括生长素诱导的基因,如Aux/IAAs(Weijers et al.,2005)、生长素响应因子ARFs(Mattsson et al., 2003)、SAURs(Jenik et al., 2005),脱落酸诱导的基因如LEA基因(Linacero et al., 2001)等。此外,近年来在植物体胚发生过程中特异蛋白的分析和鉴定方面也取得一定的进展(Yin et al., 2008; Lyngved et al.,2008;Pan et al., 2009)。

3.1 ETH的分子作用机制

由于ETH为一种气体激素,学者研究相对较少,ETH在体胚发生中作用的研究主要是通过其合成途径中SAMS、ACS、ACO 3个关键酶以及ETH合成抑制剂来间接考察ETH的分子作用机制,对于ETH的合成、分解代谢及信号传导途径的研究更进一步揭示了ETH调控体胚发育的内在分子机制(Raffeiner et al., 2009; Ptak et al., 2010)。

ETH生物合成的前体ACC合成酶(ACS)是植物体内ETH生物合成的限速酶,目前在多种植物中已分离克隆该基因,ACS是多基因家族,不同植物品种或者同一品种在不同外界条件下合成的ACS性质有差异。Lu等(2011)从欧洲赤松胚性愈伤的PCR产物中分离和鉴定出2个编码ACS(乙烯生物合成途径中的限速酶)的基因PsACS1PsACS2,其氨基酸序列有69%的相似性,PsACS1基因在增殖和成熟阶段均表达,而PsACS2只是在成熟阶段才表达,且在体胚发育中PsACS2表达与ETH有关,提出PsACS2可作为体胚成熟早期的基因标记。

另据研究表明,ETH在胁迫条件下合成,而高浓度的ETH会激发体细胞胚产生和次级胚产生,如低温胁迫可以通过增加ACC合酶活性来增加ETH的合成(Mauri et al., 2011)。报道称ETH在不同植物体胚发生中的效应不同,主要是由于ETH与其他激素信号途径共同作用,在大豆(Glycine max)子叶的体胚中已发现存在ETH生物合成的转录上调(Thibaud-Nissen et al., 2003)。Mantiri等(2008)对于截形苜蓿(Medicago truncatula)的研究表明体胚发育相关因子MtSERF1(M. truncatula somaticembryo related factor 1) 由ETH诱导并在胚性愈伤组织中表达,通过RNAi抑制该基因表达可很大程度上抑制体胚发生; Mathieu等(2003)证实该基因是乙烯反应元件(ERE)的亚族。

ACO是乙烯合成途径中的另一关键酶,在高等植物中,ACO被认为是ETH合成和ETH反应的一个主要分子标记。研究表明ACO也是个多基因家族,该基因家族成员在时空的诱导下表现特异性,在拟南芥中存在多个ETH受体,ETR1,ETR2,ETR3,ETR4,其中ETR1的结构最具完整性(Peck et al., 1998; Wei et al., 2003; 2007)。Mantiri等(2008)对截形苜蓿胚性愈伤基因转录谱的分析表明,在胚性愈伤中ETH合成和响应基因都明显上调,运用qPCR对ETH前体ACS基因、ACO基因、MtSERF1基因的mRNA水平进行检测,表明MtSERF1是AP2/ERF基因的转录因子家族成员,检测乙烯反应元件(ERE)启动子区域,从转录起始位点上游1 758bp的区域分离、克隆和测序,除具TATA和CAAT盒外,启动子区域还包括一些作用元件,如2个ERE作用元件、2个WUSCHEL的结合位点、4个细胞分裂素信号相关的拟南芥响应元件(ARR1)、1个生长素响应元件(ARF)及1个烟草EIN3类元件(TEIL)。

研究表明,ETH受体基因、ACS和ACO基因均受生长素调控,由生长素诱导的ETH量的增加是由于它们直接或间接地影响了ACS的活性,通过编码这些酶的基因的过量表达发生作用(BuddendorfJoosten et al., 1994; Hansen et al., 2000)。ACS基因在拟南芥的富含生长素的愈伤组织诱导培养基中基因表达为上调基因(Che et al., 2006)。此外,番茄(Solanum lycopersicum)的ETH应答基因的表达独立于ETH的信号可能与受ETH信号转导途径上游组件调控的转录因子有关,ETH和发育信号相互作用共同调控基因转录最终使植物产生相应的反应(Tieman et al., 2001)。

3.2 PAs的分子作用机制

从PAs的生物代谢途径(图 1)可以看出,PAs的生物合成涉及多个关键酶,PAs含量的升高被认为是体胚发生的前提,PAs作为激素作用的媒介在植物的体细胞胚胎发生中发挥重要的作用,PAs生物合成途径的ADC、ODC、SAMDC 3个关键酶能在短时间内应对外界刺激来调控体内PAs水平,进而调控植物的体胚发生(Loukanina et al., 2008)。

研究表明SAMDC(EC: 41.15) 是一个进化上高度保守的脱羧酶家族,是Spd和Spm合成的关键酶,催化SAM脱羧形成脱羧S-腺苷甲硫氨酸(dcSAM),为Spd和Spm的生物合成提供氨丙基(Bais et al., 2001)。现已在水稻、大豆、拟南芥等多种植物中成功地分离并克隆许多编码SAMDC的相关基因,并得到相应的突变体和转基因植物(Franceschetti et al., 2001; Wi et al., 2006)。Imai等(2004)通过T-DNA插入突变的方法得到Spd合成酶基因(SPDS1SPDS2) 突变体,发现其中任何1个基因突变植株均能正常生长,2个基因同时突变将导致胚胎死亡,进一步验证了SPDS在植物胚胎发育中的作用。

细胞复制是胚胎发生过程的重要事件,在真核生物和原核生物胚胎发生过程中PAs是重要的细胞周期调控因子,在对称和不对称细胞的分裂、分化和死亡的关键位点调控生物的生命周期(Oredsson,2003; Wallace et al., 2003)。当细胞重新进入G1期,并且Spm和Spd水平升高的同时发生G1/S周期的转变(Kwak et al., 2002; Gemperlová et al., 2005)。PAs生物合成抑制剂的应用可阻止细胞周期的正常进行,同时PAs还可调控植物中的G2/M的转变,对植物细胞周期的研究发现ODC和SAMDC的转录和活性有差异,并验证了它们在转录、翻译、翻译后过程中的调控作用(Kwak et al., 2002; Coueé et al., 2004)。

近年来对于PAs代谢途径中SAM和SAH(S-腺苷同型半胱氨酸S-adenosylhomocysteine)的研究表明,SAM具有酶辅助因子的作用并参与PAs及ETH的生物合成,SAM是细胞内广泛存在的甲基供体,在特定的转甲基酶作用下将其甲基转移到各种生物受体(如: DNA、RNA、蛋白、磷脂)上,从而形成SAH(Acosta et al., 2005; Baron et al., 2008)。早期研究表明,在胡萝卜的体胚发生中SAM和SAH及二者比值增加(Munksgaard et al., 1995); 在细菌胚胎发生中发现SAM-SAH的修饰与mRNA编码核糖开关的调控有关,因此可采用SAM-SAH作为特异标记来调控细菌中基因的表达(Wang et al., 2008)。

研究表明SAM是高度保守代谢物,参与表观遗传修饰,DNA、RNA的甲基化,多胺和乙烯的生物合成,并可作为多种酶的辅助因子(Ge et al., 2010)。研究表明SAM转甲基作用是植物体胚发生和器官发生非常重要的表观遗传学的翻译后调控模式,可改变染色质结构和细胞周期的基因表达(Loenen,2006),在陆地棉(Gossypium hirsutum)细胞分化的早期阶段起作用的SAM代谢途径相关基因的差异表达也证实了SAM的这一作用(Zhu et al., 2008)。植物细胞分化的早期阶段通过SAM参与转甲基化活性的调控可实现对细胞周期的调控。在拟南芥突变体的研究中抑制蛋氨酸循环的关键步骤,可导致相应的甲基化和去甲基化从而形成带缺陷的胚胎或死亡的胚胎(Rocha et al., 2005; Ge et al., 2010)。

在逆境胁迫下多胺的积累依赖ABA(脱落酸)的作用。研究表明参与多胺生物合成基因(ADC2SPMSSAMDC2)受ABA诱导,逆境胁迫和脱落酸的作用元件出现在这些基因的启动子区域(Hummel et al.,2004;Alcázar et al., 2006); 另据研究表明,这种依赖ABA的多胺生物合成的基因的调控作用在ABA生物合成和信号突变体中会受到抑制(Serafini et al., 2008)。这在一定程度上证实了脱落酸和PAs间的关系。此外,研究表明PAs含量对植物体内的钙离子通道和硝酸盐还原酶起调控作用(Athwal et al.,2002;Gemperlová et al., 2006);PAs的氧化可产生H2O2,而H2O2在植物应答生物胁迫中起到信号分子的作用,烟草花叶病毒导致的烟草(Nicotianatabacum)细胞程序性死亡正是由PAs氧化产生的H2O2介导的,可见PAs在植物体胚发育过程中起到重要的调控作用(Yodaet al., 2003; 2006)。

4 结语

体细胞胚胎发生是植物细胞全能性的一种表达方式,体细胞胚胎发生和发育机制的深入研究有着重要的理论意义和实际价值。研究表明,内源多胺、乙烯、生长素、细胞分裂素、脱落酸几种植物激素共同调控着植物体胚的发生发育,一定程度上揭示了多胺和乙烯在体胚发生中的作用机制,但目前对体细胞胚发生中的这2种激素的分子作用机制研究还不是很深入,相对生长素与脱落酸的研究还处于初始阶段。目前采用组织学分析技术、显微技术、抑制消减杂交技术、mRNA的差异显示、转座子标记、反义RNA技术、蛋白质分析等传统技术与分子技术结合可用于植物体胚发生过程中激素相关基因的表达分析; 信号转导途径相关基因及胚胎发育中编码转录因子的研究有利于更好地调控体胚的发育,蛋白质标记作为判断在植物生长发育不同阶段胚发生潜力和标志的最有效的探针,可在更深层面上揭示植物体细胞胚胎发生的分子机制,探讨不同激素间的协同作用机制,新技术和新方法的应用将有助于更好地实现对植物体胚发生过程的人工调控。

参考文献(References)
[] 崔凯荣, 戴若兰. 2000. 植物体细胞胚发生的分子生物学. 北京, 科学出版社: 70-75.
[] 余叔文, 汤章城. 2003. 植物生理与分子生物学. 2版.北京, 科学出版社: 493-510.
[] Acosta C, Pérez-Amador M A, Carbonell J. 2005. The two ways to produce putrescine in tomato are cell-specific during normal development. Plant Sci, 168(4): 1053–1057. DOI:10.1016/j.plantsci.2004.12.006
[] Alcázar R, Marco F, Cuevas J C, et al. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett, 28(23): 1867–1876. DOI:10.1007/s10529-006-9179-3
[] Alonso J M, Stepanova A N. 2004. The ethylene signaling pathway. Science, 306(5701): 1513–1515. DOI:10.1126/science.1104812
[] Ammirato P V. 1983. The regulation of somatic embryo development in plant cell cultures: suspension culture techniques and hormone requirements. Nature Biotechnology, 1(10): 82–123.
[] Athwal G S, Huber S C. 2002. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J, 29(2): 119–129. DOI:10.1046/j.0960-7412.2001.01200.x
[] Bais H P, Sudha G, Ravishankar G A. 2001. Influence of putrescine silver nitrate and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Chichorium intybus and their regenerants. Plant Cell Rep, 20(6): 547–555. DOI:10.1007/s002990100367
[] Baron K, Stasolla C. 2008. The role of polyamines during in vivo and in vitro development. In Vitro Cellular & Developmental Biology-Plant, 44(5): 384–395.
[] Bastola D R, Minoeha S C. 1995. Increase putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol, 109(1): 63–71. DOI:10.1104/pp.109.1.63
[] Bhatnagar P, Glasheen B M, Bains S K, et al. 2001. Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol, 125(4): 2139–2153. DOI:10.1104/pp.125.4.2139
[] Biddington N L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regulation, 11(2): 173–187. DOI:10.1007/BF00024072
[] Buddendorf-Joosten J M C, Woltering E J. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul, 15(1): 1–16. DOI:10.1007/BF00024671
[] Che P, Lall S, Howell S H. 2006. Gene expression programs during hoot, root and callus development in Arabidopsis tissue culture. Plant Physiol, 141(2): 620–637. DOI:10.1104/pp.106.081240
[] Chen J T, Chang W C. 2003. 1-aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures. Biologia Plantarum, 46(3): 455–458. DOI:10.1023/A:1024307025893
[] Chiappetta A, Fambrini M, Petrarulo M. 2009. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus × H.tuberosu. Annals of Botany, 103(5): 735–747. DOI:10.1093/aob/mcn266
[] Coueé I, Hummel I, Sulmon C. 2004. Involvement of polyamines in root development. Plant Cell Tissue Org Cult, 76(1): 1–10. DOI:10.1023/A:1025895731017
[] Cvikrová M, Malá J, Eder J, et al. 1998. Abscisic acid polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol Biochemical, 36(3): 247–255. DOI:10.1016/S0981-9428(97)86882-9
[] Dias L L C, Santa-Catarina C, Ribeiro D M, et al. 2009. Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Org Cult, 99(2): 199–208. DOI:10.1007/s11240-009-9594-y
[] El Meskaoui A, Desjardins Y, Tremblay F M. 2000. Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plantarum, 109(3): 333–342. DOI:10.1034/j.1399-3054.2000.100315.x
[] El Meskaoui A, Tremblay F M. 2001. Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. Journal of Experimental Botany, 52(357): 761–769. DOI:10.1093/jexbot/52.357.761
[] Feher A, Pasternak T P, Dudits D. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult, 74(3): 201–228. DOI:10.1023/A:1024033216561
[] Franceschetti M, Hanfrey C, Scaramagli S, et al. 2001. Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J, 353(2): 403–409. DOI:10.1042/bj3530403
[] Galston A W. 1983. Polyamines as modulators of plant development. Bioscience, 33(6): 382–382. DOI:10.2307/1309107
[] Ge Xiaoxia, Fan Gai'en, Chai Lijun, et al. 2010. Cloning, molecular characterization and expression analysis of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene (CitSERK1-like) in Valencia sweet orange. Acta Physiol Plant, 32(6): 1197. DOI:10.1007/s11738-010-0515-9
[] Gemperlová L, Eder J, Cvikrová M. 2005. Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol Biochem, 43(4): 375–381. DOI:10.1016/j.plaphy.2005.02.012
[] Gemperlová L, Nováková M, Vaň nková R. 2006. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves. J Exp Bot, 57(6): 1413–1421. DOI:10.1093/jxb/erj121
[] Haccis B. 1978. Question of unicellar origin on non-zygotic embryos in callus cultures. Phytomotphology, 28(1): 74–81.
[] Hanai L R, Floh E I S, Fungaro M H P, et al. 2010. Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae). In Vitro Cell Dev Biol-Plant, 46(4): 368–377. DOI:10.1007/s11627-010-9291-x
[] Hansen H, Grossman K. 2000. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol, 124(3): 1437–1448. DOI:10.1104/pp.124.3.1437
[] Harsh B, Govinda S, Gokare R. 2001. Influence of putrescine, silver nitrate and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Cichorium intybus and their regenerants. Plant Cell, 20(6): 547–555. DOI:10.1007/s002990100367
[] Hatanaka T, Sawabe E, Azuma T, et al. 1995. The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci, 107(2): 199–204. DOI:10.1016/0168-9452(95)04103-2
[] Helleboid S, Couillerot J P, Hilbert J L, et al. 1995. Inhibition of direct somatic embryogenesis by α-difluoromethylarginine in a Cichorium hybrid: effects on polyamine content and protein patterns. Planta, 196(3): 571–576.
[] Huang S Y, Chan H S, Wang T T. 2006. Induction of somatic embryos of celery by control of gaseous compositions and other physical conditions. Plant Growth Regulation, 49(2): 219–227.
[] Hummel I, Bourdais G, Gousbet G, et al. 2004. Differential gene expression of arginine decarboxylase ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytol, 163(3): 519–531. DOI:10.1111/nph.2004.163.issue-3
[] Hutchinson M J, Murr D, Krishnaraj S. 1997. Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium × hortorum bailey) hypocotyl cultures. In Vitro Cellular & Developmental Biology-Plant, 33(2): 136–141.
[] Imai A, Matsuyama T, Hanzawa Y, et al. 2004. Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol, 135(3): 1565–1573. DOI:10.1104/pp.104.041699
[] Jenik P D, Barton M K. 2005. Surge and destroy: the role of auxin in plant embryogenesis. Development, 132(10): 3577–3585.
[] Jha A K, Dahleen L S, Suttle J C. 2007. Ethylene influences green plant regeneration from barley callus. Plant Cell Reports, 26(3): 285–290. DOI:10.1007/s00299-006-0252-0
[] Kepczynska E, Rudus I, Kepczynski J. 2009a. Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul, 59(1): 63–73. DOI:10.1007/s10725-009-9388-6
[] Kepczynska E, Rudus I, Kepczynski J. 2009b. Abscisic acid and methyl jasmonate as regulators of ethylene biosynthesis during somatic embryogenesis of Medicago sativa L. Acta Physiol Plant, 31(6): 1263–1270. DOI:10.1007/s11738-009-0363-7
[] Kepczynska E, Zielinska S. 2011. Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L.reduces embryos'ability to regenerate. Acta Physiol Plant, 33(5): 1969–1980. DOI:10.1007/s11738-011-0745-5
[] Kiselev K V, Gorpenchenko T Y, Tchernoded G K, et al. 2008. Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolC oncogene. Mol Biol, 42(2): 243–252. DOI:10.1134/S0026893308020106
[] Kong L, Yeung E C. 1994. Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci, 104(1): 71–80. DOI:10.1016/0168-9452(94)90192-9
[] Kumar V, Giridhar P, Chandrashekar A, et al. 2008. Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex Fr.Acta Physiol Plant, 30(2): 217–223. DOI:10.1007/s11738-007-0110-x
[] Kumar V, Ramakrishna A, Ravishankar G. 2007. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P. ex Fr.In Vitro Cellular and Developmental Biology, 43(6): 602–607. DOI:10.1007/s11627-007-9067-0
[] Kusano T, Berberich T, Tateda C, et al. 2008. Polyamines: essential factors for growth and survival. Planta, 228(3): 367–381. DOI:10.1007/s00425-008-0772-7
[] Kvaalen H. 1994. Ethylene synthesis and growth in embryogenic tissue of Norway spruce: Effects of oxygen, 1-aminocyclopropane-1-carboxylic acid, benzyladenine and 2, 4-dichloropheno-xyacetic acid. Physiol Plant, 92(1): 109–117. DOI:10.1111/ppl.1994.92.issue-1
[] Kwak S H, Lee S H. 2002. The transcript-level-independent activation of ornithine decarboxylase in suspension-cultured BY2 cells entering the cell cycle. Plant Cell Physiol, 43(10): 1165–1170. DOI:10.1093/pcp/pcf132
[] Li X Y, Huang F H. 1996. Induction of somatic embryogenesis in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol-Plant, 32(3): 129–135. DOI:10.1007/BF02822755
[] Linacero M R, Lopez B V. 2001. Expression of different abscisic acid responsive genes during somatic embryogenesis in sugarcane(Saccharum officianarum). Protoplasma, 217(4): 199–204. DOI:10.1007/BF01283401
[] Linkiewicz A, Filipecki M, Tomczak A, et al. 2004. The cloning of sequences differentially transcribed during the induction of somatic embryogenesis in Cucumber (Cucumis sativus L.). Cell Mol Biol Lett, 9(4): 805–817.
[] Loenen W A M. 2006. S-Adenosylmethionine: jack of all trades and master of everything. Biochem Soc Trans, 34(2): 330–333. DOI:10.1042/BST0340330
[] Loukanina N, Thorpe T A. 2008. Arginine and ornithine decarboxylases in embryonic and non-embryonic carrot cell suspensions. In Vitro Cell Dev Biol Plant, 44(1): 59–64. DOI:10.1007/s11627-007-9080-3
[] Lu Jinrong, Vahala J, Pappinen A. 2011. Involvement of ethylene in somatic embryogenesis in Scots pine(Pinus sylvestris L.). Plant Cell Tiss Organ Cult, 107(1): 25–33. DOI:10.1007/s11240-011-9952-4
[] Lyngved R, Renaut J, Hausman J, et al. 2008. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul, 27(4): 353–369. DOI:10.1007/s00344-008-9061-8
[] Mantiri F R, Kurdyukov S, Lohar D P. 2008. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol, 146(4): 1622–1636. DOI:10.1104/pp.107.110379
[] Mathieu M, Neutelings G, Hawkins S. 2003. Cloning of a pine germinlike protein (GLP) gene promoter and analysis of its activity in transgenic tobacco bright yellow 2 cells. Physiol Plant, 117(3): 425–434. DOI:10.1034/j.1399-3054.2003.00050.x
[] Mattsson J, Ckurshumova W, Berleth T. 2003. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol, 131(3): 1327–1339. DOI:10.1104/pp.013623
[] Mauri P V, Manzanera J A. 2011. Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content. Acta Physiol Plant, 33(3): 717–723. DOI:10.1007/s11738-010-0596-5
[] Minocha R, Kvaalen H, Minocha S C, et al. 1993. Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol, 13(4): 365–377. DOI:10.1093/treephys/13.4.365
[] Montague M J, Armstrong T A, Jaworski E G. 1979. Polyamine metabolism in embryogenic cells of Daucus carota Ⅱ. Changes in arginine decarboxylase activity.Plant Physiol, 63(2): 341–345.
[] Monteiro M, Kevers C, Dommes J, et al. 2002. A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tiss Organ Cult, 68(3): 225–232. DOI:10.1023/A:1013950729576
[] Munksgaard D, Mattsson O, Okkels F. 1995. Somatic embryo development in carrot is associated with an increase in levels of Sadenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiol Plant, 93(1): 5–10. DOI:10.1034/j.1399-3054.1995.930102.x
[] Nabha S, Lamblin F, Gillet F, et al. 1999. Polyamine content and somatic embryogenesis in Papaver somniferum cells transformed with sam-1 gene. Plant Physiology, 154(5 /6): 729–734.
[] Niemi K, Sarjala T, Chen X, et al. 2002. Spermidine and methylglyoxal bis (guanylhydrazone) affect maturation and endogenous polyamine content of Scots pine embryogenic cultures. Journal of Plant Physiology, 159(10): 1155–1158. DOI:10.1078/0176-1617-00634
[] Nissen P. 1994. Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant, 92(3): 397–402. DOI:10.1111/ppl.1994.92.issue-3
[] Oredsson S M. 2003. Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans, 31(1): 366–370.
[] Pan Z, Guan R, Zhu S, et al. 2009. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep, 28(2): 281–289. DOI:10.1007/s00299-008-0633-7
[] Peck S C, Kende H. 1998. Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate(ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol Biol, 38(6): 977–982. DOI:10.1023/A:1006033030081
[] Ptak A, El Tahchy A, Wyzgolik G, et al. 2010. Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures.Plant Cell Tiss Org Cult, 102(1): 61–67. DOI:10.1007/s11240-010-9706-8
[] Puga-Hermida M I, Gallardo M, Rodriguez-Gacio M C, et al. 2006. Polyamines contents, ethylene synthesis and Br ACO2 expression during turnip germination. Biol Plant, 50(4): 574–580. DOI:10.1007/s10535-006-0090-5
[] Pullman G S, Namjoshi K, Zhang Y. 2003. Somatic embryogenesis in loblolly pine (Pinus taeda L. ):improving culture initiation with abscisic acid and silver nitrate.Plant Cell Reports, 22(2): 85–95.
[] Raffeiner B, Serek M, Winkelmann T. 2009. Agrobacterium tumefaciensmediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss Org Cult, 98(2): 125–134. DOI:10.1007/s11240-009-9545-7
[] Rensing S A, Lang D, Schumann E, et al. 2005. EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. Journal of Plant Growth Regulation, 24(2): 102–115. DOI:10.1007/s00344-005-0033-y
[] Rocha P S C F, Sheikh M, Melchiorre R, et al. 2005. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L -homocysteine hydrolase required for DNA methylationdependent gene silencing. Plant Cell, 17(2): 404–417. DOI:10.1105/tpc.104.028332
[] Rodríguez-Gacio M D C, Nicolás C, Matilla A J. 2004. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa):molecular characterization of the 1-aminocyclopro-pane-1-carboxylate oxidase BrACO1 throughout zygotic embryogenesis and germination of heterogeneous seeds. Physiologia Plantarum, 121(1): 132–140. DOI:10.1111/ppl.2004.121.issue-1
[] Roustan J P, Latche A, Fallot J. 1989. Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Reports, 8(3): 182–185. DOI:10.1007/BF00716836
[] Saly S, Joseph C, Corbineau F, et al. 2002. Induction of secondary somatic embryogenesis in hybrid larch (Larix × leptoeuropaea) as related to ethylene. Plant Growth Regul, 37(3): 287–294. DOI:10.1023/A:1020856112765
[] Santanen A, Simola L K. 1992. Polyamine metabolism in developing somatic embryos in tissue cultures of Picea abies. Acta Hortic, 447(3): 113–117.
[] Sauerbrey E, Grossman K, Jung J. 1987. Is ethylene involved in the regulation of growth sunflower cell suspension cultures. Journal of Plant Physiology, 127(5): 471–479. DOI:10.1016/S0176-1617(87)80255-9
[] Seiler N, Raul F. 2005. Polyamines and apoptosis. J Cell Mol Med, 9(3): 623–642. DOI:10.1111/jcmm.2005.9.issue-3
[] Serafini-Fracassini D, Del Duca S. 2008. Transglutaminases: widespread cross-linking enzymes in plants. Ann Bot, 102(2): 145–152. DOI:10.1093/aob/mcn075
[] Shoeb F, Yadav J S, Bajaj S, et al. 2001. Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci, 160(6): 1229–1235. DOI:10.1016/S0168-9452(01)00375-2
[] Singla B, Khurana J P, Khurana P. 2008. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep, 27(5): 833–843. DOI:10.1007/s00299-008-0505-1
[] Sridevi V, Giridhar P, Ravishankar A. 2009. Endogenous polyamine profiles in different tissues of Coffea sp. and their levels during the ontogeny of fruits.Acta Physiol Plant, 31(4): 757–764.
[] Stasolla C, Belmonte M F, Van Zyl L, et al. 2004. The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot, 55(397): 695–709. DOI:10.1093/jxb/erh074
[] Steinborn K, Maulbetsch C, Priester B, et al. 2002. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev, 16(9): 959–971.
[] Thibaud N F, Shealy R T, Khanna A, et al. 2003. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiology, 132(1): 118–136. DOI:10.1104/pp.103.019968
[] Thoma C, Bergamini G, Galy B, et al. 2004. Enhancement of IRESmediated translation of the c-myc and BiP mRNAs by the Poly(A) tail is independent of intact eIF4G and PABP. Molecular Cell, 15(6): 925–935. DOI:10.1016/j.molcel.2004.08.021
[] Tieman D M, Ciardi J A, Taylor M G. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J, 26(1): 47–58. DOI:10.1046/j.1365-313x.2001.01006.x
[] Walden R, Cordeiro A, Tiburcio A F. 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol, 113(4): 1009–1013. DOI:10.1104/pp.113.4.1009
[] Wallace H M, Fraser A V, Hughes A. 2003. A perspective of polyamine metabolism. Biochem J, 376(15): 1–14.
[] Wang J X, Breaker R R. 2008. Riboswitches that sense Sadenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol, 86(2): 157–168. DOI:10.1139/O08-008
[] Wang N N, Shih M C, Li N. 2005. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot, 56(413): 909–920. DOI:10.1093/jxb/eri083
[] Wann S R, Becwar M R, Nagmani R, et al. 1989. Biochemical differences between embryogenic and nonembryogenic calli of conifers. Trees -Structure and Function, 3(3): 173–178.
[] Wei S C, Peng F T, Shu H R, et al. 2007. Cloning and sequence analysis of two encoding ethylene receptor cDNAs in'Dongzao'jujube. Acta Horticulturae Sinica, 34(2): 333–338.
[] Wei S C, Zhu B Z, Luo Y B, et al. 2003. Cloning of ethylene reportor genes LeETR1 and LeETR2 and their expression in tomato fruit. Journal of Agricultural Biotechnology, 11(2): 127–130.
[] Weijers D, Sauer M, Meurette O, et al. 2005. Maintenance of embryonic auxin distribution for apical-basal patterning by PINFORMED-dependent auxin transport in Arabidopsis. Plant Cell, 17: 2517–2526. DOI:10.1105/tpc.105.034637
[] Wi J, Kim T, Park Y. 2006. Overexpression of carnation Sadenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep, 25(10): 1111–1121. DOI:10.1007/s00299-006-0160-3
[] Yadav J S, Rajam M V. 1998. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiology, 11(6): 617–625.
[] Yamagami T, Tsuchisaka A, Yamada K, et al. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biological Chemistry, 278(29): 49102–49112.
[] Yin L, Lan Y, Zhu L. 2008. Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol, 68(6): 597–617. DOI:10.1007/s11103-008-9395-4
[] Yoda H, Hiroi Y, Sano H. 2006. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiology, 142(1): 193–206. DOI:10.1104/pp.106.080515
[] Yoda H, Yamaguchi Y, Sano H. 2003. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology, 132(4): 1973–1981. DOI:10.1104/pp.103.024737
[] Zhu H, Tu L, Jin S, et al. 2008. Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton. Chinese Sci Bull, 53(23): 3666–3676. DOI:10.1007/s11434-008-0468-1