林业科学  2010, Vol. 46 Issue (1): 158-162   PDF    
0

文章信息

周庆源, 傅德志
Zhou Qingyuan, Fu Dezhi
文冠果生殖生物学的初步研究
Preliminary Studies on the Reproductive Biology of Xanthoceras sorbifolia
林业科学, 2010, 46(1): 158-162.
Scientia Silvae Sinicae, 2010, 46(1): 158-162.

文章历史

收稿日期:2008-11-03

作者相关文章

周庆源
傅德志

文冠果生殖生物学的初步研究
周庆源, 傅德志    
中国科学院植物研究所系统与进化植物学国家重点实验室 北京 100093
关键词:文冠果    生殖生物学    自交败育    
Preliminary Studies on the Reproductive Biology of Xanthoceras sorbifolia
Zhou Qingyuan, Fu Dezhi    
State Key Laboratory of Systematics and Evolutionary Botany Institute of Botany, Chinese Academy of Sciences Beijng 100093
Abstract: The reproductive biology of Xanthoceras sorbifolia, an energy crop, was investigated through field observation, artifical pollination, anatomical techniques and fluorescence microscopy. Inflorescence buds of X. sorbifolia emerge at the beginning of March and flowers bloom in the following two months in Beijing, China. Flowering of individual trees lasts 25 to 30 days with the peak in the mid and late April. The inflorescence belongs to raceme with 20 to 50 flowers, which develop acropetally. The breeding system of X. sorbifolia is andromonoecious, i.e., hermaphroditic and male flowers appear on the same individual. Most inflorescences bear entirely male flowers, and a few inflorescences develop varying proportions of male and hermaphroditic flowers. Occasionally male flowers frequency is zero. Male flowers have obviously reduced nonfunctional pistils and are incapable of setting fruit. The pistils of male flower bear ovules prior to abortion. Dehiscence of five anthers in male flowers is asynchronous and anthers of only a few hermaphroditic flowers dehisce to shed pollens at anthesis. Although the pollen grains of both male and hermaphroditic flowers are viable, germination frequency of pollen of the hermaphroditic flowers on stigmas is extremely low. The most commonly observed visiting insects in this study area include honeybees, coccinellids and flies. Stigmas of the hermaphroditic flowers are receptive to self-and cross-pollens during the first 3 days of anthesis. Mature fruits merely come from cross-fertilization while the development of self-pollinated ovaries is arrested soon after initially expanded growth. A free-nuclear endosperm occurs in self-fertilized ovules before abortion. Two-celled proembryoes were occasionally observed in the self-fertilized ovules, but their development did not proceed and they degenerated after several days. This study revealed the trait of self-sterility in X. sorbifolia for the first time.
Key words: Xanthoceras sorbifolia    reproductive biology    self-sterility    

文冠果(Xanthoceras sorbifolia)隶属于无患子科(Sapindaceae)文冠果属(Xanthoceras),该属仅此1种,为中国特产,在华北、华东和西北地区均有自然分布(牟洪香等,2008)。文冠果种子含油率为30.4%,种仁含油率为55%~66%,并含有丰富的亚油酸和亚麻酸等,可作为优良的食用油,在工业上可作为生产高级润滑油、油漆和肥皂等化工产品的优质原料。由于受到能源危机和生态危机的挑战, 开发可再生的生物质能源已受到国内外广泛重视。文冠果种子不仅含油率高, 而且适合制造生物质柴油, 被视为最具开发潜力的能源植物之一(牟洪香等, 2007)。

文冠果是优越的木本能源植物,但其座果率低(高述民等,2002),以至单位面积产量低、开发成本高、经济效益低。如何提高文冠果的座果率和增加单位面积的产量,是当前文冠果研发的瓶颈问题,亟需植物生殖生物学家解决。

1 材料与方法 1.1 试验材料

观察和研究的材料是种植于北京市顺义区大孙各庄镇的文冠果300多株,其中用于人工授粉和取材固定的有60多株,树龄为7年。

1.2 试验方法

在野外直接观察花序和花各个时期的发育和形态变化。从花序芽产生到开花前10天每隔6天观察1次花序芽和花芽的发育状况,开花前10天每隔3天观察1次花的发育和形态特征,开花期间每天观察1次,开花期结束后每隔6天观察记录1次子房和果实发育状况,直到果实成熟。

开花时期取雄花和两性花的新鲜花粉在花粉培养基(100 mL 10%蔗糖+2 mL 0.1%硼酸)上萌发试验。开花前对两性花套袋,开花后不同时期在柱头上涂抹不同来源的花粉。自交授粉包括用两性花自身花粉或同一植株上其他雄花或两性花的花粉授粉。杂交授粉包括用来源地不同或生长在10 m以外的同一来源地的其他植株的雄花或两性花花粉授粉。

取自交和杂交后1, 2, 5, 10, 24, 30, 48, 72 h以及5, 8, 10, 15天的两性花雌蕊或胚珠用FAA固定液(90 mL 50%酒精+6 mL冰乙酸+4 mL甲醛)固定。雌蕊用1 mol·L-1的氢氧化钠在室温下离析24 h,然后用0.5%的苯胺蓝(溶解于0.03 mol·L-1磷酸钾)染色,用Zeiss LSM410荧光显微镜观察柱头、花柱、子房和胚珠中的花粉管。

取FAA固定的材料,通过常规石蜡制片法进行组织切片,番红固绿对染,用Zeiss LSM410荧光显微镜观察、照相。

2 结果与分析 2.1 文冠果花的生物学

在北京地区,花序芽在每年3月初产生。3月份花序芽发育较慢。进入4月以后,随着温度升高,花序迅速发育,花序轴伸长,花蕾间距增大,花蕾生长迅速。文冠果为总状花序,花序上有20~40朵花。花序表现为向顶发育, 花从花序轴基部向顶端陆续开放。4月5日左右, 最先发育的花序上开始出现开花。个体植株的花期为25~30天, 开花高峰期为4月中、下旬。

文冠果的花有2种,即雄花和两性花,它们生长在同一个体植株上,所以文冠果的繁育系统属于雄全同株类型(andromonoecy)。文冠果有3种花序,一种花序上全部为雄花,一种花序上全部为两性花,另一种花序上既有雄花又有两性花(图版Ⅰ-1)。这些花序占植株个体总花序的比例分别为99.5%,0.05%和0.45%。在最后1种类型花序中,两性花的数量通常比雄花多,雄花位于花序的基部和顶端,两性花位于中间,基部的雄花常有2~10个,顶部1~13个。在个体植株上,雄花序的发育比两性花序早,所以最先开放的花都是雄花。

图版Ⅰ   Plate Ⅰ  

雄花或两性花大多在上午开放,也有少数在下午或晚上开放。单个雄花的花期一般为5天,偶尔为6天。雄花通常有8个雄蕊,少数为10或9个。这些雄蕊的发育不同步,雄花刚开放时,通常有3个雄蕊高于另外5个雄蕊(图版Ⅰ-2)。开放后2~10 h,3个较高雄蕊的花药首先开裂散粉,其余雄蕊的花丝陆续升高后花药开裂散粉。花开放后2天, 8个雄蕊全部完成散粉, 这时所有雄蕊的高度近等。开花后雄花脱落。

两性花通常有8个雄蕊,少数为10个。开花第1天,雄蕊的花药贴近子房壁(图版Ⅰ-3),开花后1~2天,雄蕊向外倾斜而略离子房壁。随着花的发育,雄蕊花丝也不同程度地伸长,大多数两性花的花药始终不开裂散粉,约有25%的两性花在开花后3~4天,几个雄蕊的花药也陆续开裂散粉。

成熟雄花和两性花在形态结构上存在明显差别,但在发育早期,它们没有显著不同。雄花在发育早期具有两性花的完全结构,并且雌蕊内也产生胚珠,但在发育中后期,雌蕊不能正常发育而退化。有少数花在形态结构上为雄花和两性花的中间类型(图版Ⅰ-4),雄蕊能够开裂散粉,雌蕊的大小介于雄花和两性花的雌蕊之间,但不能受精发育,所以这样的花在功能上仍为雄花。

2.2 传粉和受精生物学

文冠果为虫媒花,开花时期观察到有多种昆虫访问雄花和两性花,包括蜜蜂、瓢虫和蝇类(图版Ⅰ-5, 6)。

雄花花药散出的花粉在花粉培养液中培养1.5 h后即萌发产生花粉管,萌发率为85%,在异株两性花柱头上授粉2 h后萌发。开花第1天的两性花未开裂花药的花粉在花粉培养液和同株或异株两性花柱头上都不能萌发,开花第2和第3天的花粉在花粉培养液中的萌发率分别为8%和15%。两性花开裂雄蕊散出的花粉在培养液和柱头上的萌发率分别为56%和65%。在开花7天以后的两性花,无论是开裂散出的花粉还是非开裂散出的花粉在花粉培养液中均不能萌发。

文冠果柱头为湿柱头类型,两性花在开花的第1天能够分泌大量粘液,第2和第3天也能分泌粘液,但显著减少。粘液帮助粘着花粉,使花粉亲水,促进花粉萌发。柱头可接受花粉萌发的时期至少为3天。对第1天开花的两性花授粉,受精成功率较高,开花第2天授粉,受精成功率明显降低,开花第3天授粉,则受精成功率更低,开花第4天及以后授粉一般不能受精。

利用雄花和两性花花粉进行自交和杂交时发现,它们在同株和异株的两性花雌蕊柱头上均能萌发(图版Ⅰ-7, 8),萌发需要的时间没有明显差异,但萌发率略有不同:在同株两性花柱头上为80%,在异株两性花柱头上为90%。自交和杂交授粉均能发生受精作用(图版Ⅰ-9),受精后5~10天,2种类型授粉的子房有相似程度的膨大发育。开花第1天的两性花进行自交授粉后6天,可在胚珠的雌配子体内观察到大量游离核胚乳存在(图版Ⅰ-9),只在极少数胚珠内发现2细胞原胚,但这些原胚以后不再发育,产生几天后退化消失。在自然传粉情况下,90%的两性花能够受精,但其中只有2%的果实最终发育成熟。

2.3 果实和种子的发育

在自然传粉下,两性花受精后子房的发育程度在不同花有较大差异。有的子房发育时期较长,体积膨胀较大,而有的子房却较早地停止发育,很小时即萎蔫。1个花序上可能产生20~40个两性花,但最终发育成熟的只有1~6个果实,其中绝大多数只有1或2个成熟果。人工控制授粉试验揭示:成熟果均来自杂交授粉(图版Ⅰ-10),自交授粉的果实中途停止发育并逐渐萎蔫脱落(图版Ⅰ-11)。从开花传粉到果实成熟大约需要55~65天。成熟果大多位于果序的近顶端,少数位于果序基部,很少位于果序的中间位置。果实为蒴果,成熟时表面黑色、粗糙,沿背缝线和腹缝线开裂形成3瓣(图版Ⅰ-12)。每个果实含有15~23个种子,种子近球形,直径1.1~1.5 cm,表面光滑。

3 讨论

对文冠果的生殖生物学研究显示:文冠果植株能够产生许多花,但大多为雄花,两性花的数量很少。文献中描述文冠果具有繁华少实和“千花一果”现象(高述民等,2002),其实,单就两性花而言结实率并非如此低,多花少果现象的原因之一是雄花比例很高,而可育的两性花很少。

笔者首次对文冠果做的大量人工授粉试验研究显示:文冠果自交授粉的果实中途败育,最终发育成熟的果实均来自杂交授粉。可见,文冠果存在自交败育(self-sterility)现象。

植物产生自交败育现象的原因有2个,即自交不亲和性(self-incompatibility,SI)和早期自交抑制(early-acting inbreeding depression,EID)(Sage et al., 1999)。自交不亲和性是建立在遗传学基础上的自我识别系统而减少自交受精的机会(de Nettancourt, 1977; 2001; Barrett, 1988; Matton et al., 1994),早期自交抑制是含有纯合有害隐性等位基因的自交合子或胚的败育现象(Charlesworth et al., 1987; Husband et al., 1996)。

自交不亲和是通过对自身花粉或花粉管的识别和拒绝实现的。有些种自我识别和拒绝发生在柱头,自交花粉在柱头上的水合和萌发受到抑制,或在花粉萌发后不久,花粉管生长即受到抑制,如在虞美人(Papaver rhoeas)(Franklin-Tong et al., 1994)、Saururus cernuus(Pontieri et al., 1999)和Trillium grandiflorum(Sage et al., 2001)等。在不同种,柱头自交不亲和可能是配子体也可能是孢子体自交不亲和。在另外很多种,自交识别和拒绝发生在花柱,自交花粉管的生长在花柱里受到抑制,如Prunus avium (Crane et al., 1937)和碧冬茄(Petunia hybrida)(Herrero et al., 1980)。至今,已经报道的花柱自交不亲和皆为配子体自交不亲和(de Nettancourt, 1977; 2001)。

有些植物自交后,虽然花粉萌发和花粉管生长没有受到抑制,花粉管能够穿过花柱到达子房,但最后仍表现为自交败育。Seavey等(1986)把这种现象称为后期自交不亲和(late-acting self-incompatibility,LSI),也有人把它称为子房自交不亲和(ovarian self-incompatibility,OSI)(Sage et al., 1994)。如Dolichandra cynanchoides(Gibbs et al., 1999)、Hymenaea stigonocarpa(Gibbs et al., 1999)、Spathodea campanulata(Bittencourt et al., 2003),Pseudowintera axillaris(Sage et al., 2003)、Ipomopsis aggregata(Sage et al., 2006)等植物都为这种类型。过去认为后期自交不亲和在被子植物中是罕见现象,但现在认为它在被子植物中广泛存在(Sage et al., 2006)。

后期自交不亲和(LSI)和早期自交抑制(EID)表面上难以区别,但两者产生的原因有重要差异(Bittencourt et al., 2005)。对于后期自交不亲和,自交雌蕊败育是由遗传控制的通过对自交花粉管识别和拒绝产生的,而在早期自交抑制,自交雌蕊败育是由纯合有害隐性基因造成胚死亡引起的(Klekowski,1988; Lipow et al., 2000; Bittencourt et al., 2005)。两者可以通过败育是否为连续的时期加以区别。在后期自交不亲和,自交雌蕊败育一致性地发生在某一关键时期,而在早期自交抑制,自交雌蕊败育发生在果实生长中的一段连续时期(Sage et al., 1999; Bittencourt et al., 2005)。

后期自交不亲和有合子前期自我识别机制和合子后期自我识别机制(Sage et al., 1999)。Acacia retinodes自交花粉管可以进入胚珠,但没有穿入胚囊(Kenrick et al., 1986); 可可(Theobroma cacao)自交花粉管虽然穿入胚囊并释放精子,但没有完成双受精作用(Cope, 1962)。这2种情况发生在合子形成以前,属于合子前期的自交不亲和(prezygotic self-incompatibility)。西施花(Rhododendron ellipticum) (Williams et al.,1984), Pseudowintera axillaris(Sage et al.,2003)和Tabebuia(Bittencourt et al., 2005),虽然发生了双受精作用,但来自自交授粉的受精卵不能分裂。这种情况发生在合子产生以后,属于合子后期的自交不亲和(postzygotic self-incompatibility)。具有后期自交不亲和性特征的植物已在紫葳科(Bignoniaceae)、木棉科(Bombacaceae)、桃金娘科(Myrtaceae)、豆科(Leguminosae)、花荵科(Polemoniaceae)等发现(Seavey et al., 1986; Gibbs et al., 1993; LaDoux et al., 2006)。

至今极少量的合子后期自交不亲和性研究中,研究者都观察到胚囊内有胚乳游离核,而对于受精卵存在,一些研究者没有提及(Sears, 1937; Sparrow et al., 1948; Williams et al., 1984; Sage et al., 1991; Gibbs et al., 1993; 1999; Gibbs et al., 1999; Lewis et al., 1999; Sage et al., 2003; Bittencourt et al., 2005)。研究中没有文字说明或图片显示精、卵细胞接触和融合的过程。根据他们的研究,很难判断这些研究者所指的“受精卵”是真正的受精卵还是没有受精的卵细胞。

笔者对授粉后不同时期文冠果雌蕊的研究显示:自交花粉和杂交花粉都能在柱头萌发,而且自交花粉管也和杂交花粉管一样能穿越花柱和子房到达胚珠。自交后文冠果果实不在连续时期败育。通过大量切片和光学显微技术研究发现:文冠果自交授粉后胚囊内产生一圈原生质,原生质里有大量胚乳游离核(图版Ⅰ-9)。这表明1个精子与中央细胞发生了受精作用。但笔者在绝大多数自交授粉的胚珠内没有观察到原胚的存在,只在极少数自交胚珠内发现了2细胞原胚,但这些原胚以后不再发育,产生几天后退化消失。所以文冠果自交传粉后卵细胞与精子受精的机率和受精卵的生理活性等问题非常有待进一步研究。

图版说明

1.含有两性花和雄花的花序; 2.开花第1天的雄花, 花萼和花瓣已去除; 3.刚开放的两性花; 4.1种功能性雄花的雌蕊大小介于典型雄花和两性花的雄蕊之间; 5.蜜蜂传粉; 6.蝇传粉; 7.在两性花开花的第1天进行自交授粉24 h后柱头上的花粉管; 8.在两性花开花第1天进行杂交授粉24 h后柱头上的花粉管; 9.在两性花开花第1天进行自交授粉6天后游离核胚乳; 10.杂交授粉39天后1个花序的果实; 11.自交授粉后1个花序形成的果序; 12.杂交授粉74天后的1个成熟果实。

Explanation of plate

1.An inflorescence with both hermaphrodite and male flowers; 2.A male of flower on the first day of anthesis, with sepals and petals removed; 3.A hermaphrodite flower at the beginning of anthesis; 4.A male flower that develops an intermediate size of pistil between typical male and hermaphrodite flowers; 5.A bee visiting a male flower; 6.A fly visiting a male flower; 7.Pollen tubes on the stigma 24 hours after a hermaphrodite flower was self-pollinated on the first day of anthesis; 8.Pollen tubes on the stigma 24 hours after a hermaphrodite flower was cross-pollinated on the first day of anthesis; 9.Free-nuclear endosperm 6 days after an ovule was self-fertilized on the first day of anthesis; 10.Four fruits on the inflorescence 39 days after cross-pollination; 11.An infructescence 21 days after self-fertilization; 12.A mature fruit 74 days after cross-fertilization.

参考文献(References)
高述民, 马凯, 杜希华. 2002. 文冠果(Xanthoceras sorbifolia)研究进展[J]. 植物学通报, 19(3): 296-301.
牟洪香, 侯新村, 刘巧哲. 2007. 不同地区文冠果种仁油脂肪酸组分及含量的变化规律[J]. 林业科学研究, 20(2): 193-197.
牟洪香, 于海燕, 侯新村. 2008. 木本能源植物文冠果在我国的分布规律研究[J]. 安徽农业科学, 36(9): 3626-3628.
Barrett S C H. 1988. The evolution, maintenance, and loss of self-incompatibility systems// Lovett-Doust J, Lovett-Doust L[J]. Plant reproductive ecology. Oxford: Oxford University Press: 89-124.
Bittencourt N S, Gibbs P E, Semir J. 2003. Histological study of post-pollination events in Spathodea campanulata Beauv (Bignoniaceae), a species with late-acting self-incompatibility[J]. Ann Bot, 91: 827-834.
Bittencourt N S, Semir J. 2005. Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae)[J]. Int J Plant Sci, 166: 493-506. DOI:10.1086/428758
Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences[J]. Ann Rev Ecol Syst, 18: 237-268. DOI:10.1146/annurev.es.18.110187.001321
Cope F W. 1962. The mechanism of pollen incompatibility in Theobroma cacao L[J]. Heredity, 7: 157-182.
Crane M B, Brown A. 1937. Incompatablity and sterility in the sweet cherry, Prunus avium L[J]. J Pom, 15: 86-99.
de Nettancourt D. 1977. Incompatibility in angiosperms[M]. Berlin: Springer-Verlag.
de Nettancourt D. 2001. Incompatibility and incongruity in wild and cultivated plants[M]. Berlin: Springer-Verlag.
Franklin-Tong V E, Lawrence M J, Franklin F C H. 1994. The molecular and cellular biology of gametophytic self-incompatibility in Papaver rhoeas//Williams E B, Knox R B, Clark A E. Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Dordrecht, Netherlands, 42-64.
Gibbs P E, Bianchi M B. 1993. Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with late-acting self-incompatibility[J]. Bot Acta, 106: 64-71. DOI:10.1111/plb.1993.106.issue-1
Gibbs P E, Bianchi M B. 1999. Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa[J]. Ann Bot, 84: 449-457. DOI:10.1006/anbo.1999.0933
Gibbs P E, Oliveira P E, Bianchi M B. 1999. Postzygotic control of selfing in Hymenaea stigonocarpa (Leguminosae-Caesalpinioideae), a bat-pollinated tree of the Brazilian cerrados[J]. Int J Plant Sci, 160: 72-78. DOI:10.1086/314108
Herrero M, Dickinson H G. 1980. Pollen tube growth following compatible and incompatible intraspecific pollination in Petunia hybrida[J]. Planta, 148: 217-221. DOI:10.1007/BF00380030
Husband B C, Schemske D W. 1996. Evolution of the magnitude and timing of inbreeding depression in plants[J]. Evolution, 50: 54-70. DOI:10.1111/evo.1996.50.issue-1
Kenrick J, Kaul V, Williams E G. 1986. Self-incompatibility in Acacia retinodes: site of pollen-tube arrest is the nucellus[J]. Planta, 169: 245-250. DOI:10.1007/BF00392321
Klekowski E J J. 1988. Mutation, developmental selection and plant evolution[M]. New York: Columbia University Press.
LaDoux T, Friar E A. 2006. Late-acting self-incompatibility in Ipomopsis tenuifolia (Gray) V.Grant (Polemoniaceae)[J]. Int J Plant Sci, 167: 463-471. DOI:10.1086/500985
Lewis G, Gibbs P. 1999. Reproductive biology of Caesalpinia calycina and C.pluviosa (Leguminosae) of the cattanga of northeastern Brazil[J]. Plant Syst Evol, 217: 43-53. DOI:10.1007/BF00984921
Lipow S R, Wyatt R. 2000. Single gene control of postzygotic self-incompatibility in poke milkweed, Asclepias exalata L[J]. Genetics, 154: 893-907.
Matton D P, Nass N, Clarke A E, et al. 1994. Self-incompatibility: How plants avoid illegitimate offspring[J]. Proc Nat Acad Sci, USA, 91: 1922-1997. DOI:10.1073/pnas.91.5.1922
Pontieri V, Sage T L. 1999. Evidence for stigmatic self-incompatibility, pollination induced ovule enlargement and transmitting tissue exudates in the paleoherb, Saururus cernuus L.(Saururaceae)[J]. Ann Bot, 84: 507-519. DOI:10.1006/anbo.1999.0947
Sage T L, Bertin R, Williams E G. 1994. Ovarian and other late-acting self-incompatibility//Williams E B, Knox R B, Clarke A E.Genetic control of self-incompatibility and reproductive development in flowering plants[J]. Kluwer, Dordrecht, Netherlands: 116-140.
Sage T L, Griffin S R, Pontirei V, et al. 2001. Stigmatic self-incompatibility and mating patterns in Trillium grandiflorum and Trillium erectum (Melanthiaceae)[J]. Ann Bot, 88: 829-841. DOI:10.1006/anbo.2001.1517
Sage T L, Price M V, Waser N M. 2006. Self-sterility in Ipomopsis aggregata (Polemoniaceae) is due to pre-zygotic ovule degeneration[J]. Amer J Bot, 93: 254-262. DOI:10.3732/ajb.93.2.254
Sage T L, Sampson F B. 2003. Evidence for ovarian self-incompatibility as a cause of self-sterility in the primitive woody angiosperm, Pseudowintera axillaris (Winteraceae)[J]. Ann Bot, 91: 1-10. DOI:10.1093/aob/mcg013
Sage T L, Strumas F, Cole B. 1999. Differential ovule development following self-and crossing-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae)[J]. Amer J Bot, 86: 855-870. DOI:10.2307/2656706
Sage T L, Williams E G. 1991. self-incompatibility in Asclepias[J]. Plant Cell Incompat Newsl, 23: 55-57.
Sears E R. 1937. Self-sterility in plants[J]. Genetics, 22: 130-181.
Seavey S R, Bawa K S. 1986. Late-acting self-incompatibility in angiosperms[J]. Bot Rev, 52: 195-215. DOI:10.1007/BF02861001
Sparrow I K, Pearson N L. 1948. Pollen compatibility in Asclepias syriaca[J]. J Agri Res, 77: 187-199.
Williams E G, Kaul V, Rouse J L, et al. 1984. Apparent self-incompatibility in Rhododendron ellipticum, R. championae, and R. amamiense: a post-zygotic mechanism[J]. Incompat Newsl, 16: 10-11.