林业科学  2009, Vol. 45 Issue (11): 135-140   PDF    
0

文章信息

时忠杰, 徐大平, 张宁南, 邱志军, 胡哲森, 郭俊誉.
Shi Zhongjie, Xu Daping, Zhang Ningnan, Qiu Zhijun, Hu Zhesen, Guo Junyu
桉树人工林水文影响研究进展
Progress in Researches on Hydrological Effects of Eucalyptus Plantation
林业科学, 2009, 45(11): 135-140.
Scientia Silvae Sinicae, 2009, 45(11): 135-140.

文章历史

收稿日期:2008-07-25

作者相关文章

时忠杰
徐大平
张宁南
邱志军
胡哲森
郭俊誉

桉树人工林水文影响研究进展
时忠杰1,2, 徐大平1, 张宁南1, 邱志军1, 胡哲森3, 郭俊誉1     
1. 中国林业科学研究院热带林业研究所 广州 510520;
2. 中国环境科学研究院生态环境研究所 北京 100012;
3. 福建农林大学林学院 福州 350002
摘要: 从桉树林及各种因素(年龄、叶面积、砍伐、造林、火烧等)对蒸发散、流域产水量以及土壤水分和地下水的影响等方面综述国内外桉树人工林水文过程及其效应的研究进展。综合来看,不同区域的桉树人工林对降水的截留量差异较大,桉树人工林的蒸腾量多介于0.5~6.0 mm·d-1,叶面积指数、林分密度、土壤水分与灌溉、林分年龄及植被变化等均会影响桉树人工林的蒸发散量;砍伐(皆伐、间伐等)桉树人工林会导致流域产水量增加,营造桉树人工林会导致流域产水量减少,但当林分生长到一定年龄后,随着林分年龄的增加,蒸腾耗水量下降,流域径流量增加,火烧也会导致桉树林流域产水量增加;干旱地区桉树人工林可能会消耗浅层地下水,对深层地下水的影响还未有明显证据。目前中国桉树人工林的水文效应研究还存在诸多问题,急待加强主要研究方向与重点领域的研究。
关键词:桉树    人工林    水文    产水量    蒸散    冠层截留    
Progress in Researches on Hydrological Effects of Eucalyptus Plantation
Shi Zhongjie1,2, Xu Daping1 , Zhang Ningnan1, Qiu Zhijun1, Hu Zhesen3, Guo Junyu1    
1. Research Institute of Tropical Forestry, Chinese Academy of Forestry Guangzhou 510520;
2. Institute of Ecology and Environment, Chinese Research Academy of Environmental Sciences Beijing 100012;
3. College of Forestry, Fujian Agriculture and Forestry University Fuzhou 350002
Abstract: This paper reviews research advances in any effect of Eucalyptus plantation and some factors (such as, forest ages, logging and afforestation, wildfire etc.) on the evapotranspiration, water yield, soil water and ground water, and indicatessome problems and proposes expectations. Generally, the interception loss varied greatly in different Eucalyptus forests and the transpiration usually ranged from 0.5 mm to 6.0 mm per day. The evapotranspiration was affected by the leaf area index (LAI), forest density, content of soil water and irrigation, forest ages and conversion of Eucalyptus and other vegetations. And the water yield of catchments increases after logging such as the clearfelling, thinning or selective cutting and decrease after afforestation. The transpiration reduced and water yield of catchments increased with the increase of forest ages when Eucalyptus forests were old enough. The wildfires can increase the water yield. Eucalyptus plantations may consume the shallow ground water in the dry area, however there was no evidence that Eucalyptus plantations took the deep ground water. There are many problems that need to be resolved about the research of the effects of Eucalyptus forest on the hydrology in China, and the researches in main directions and key fields need urgently to be strengthened.
Key words: Eucalyptus    plantation    hydrology    water yield    evapotranspiration    canopy interception    

桉树,作为世界上人工种植面积最大的用材林树种之一,被广泛地栽培于热带、亚热带和部分温带地区。据估计,1955年全球桉树人工林约70万hm2,1979年为400万hm2,2005年达1 600万hm2。目前全球有超过1 700万hm2的桉树人工林,其中50%以上是在最近10年种植的(FAO, 2001)。在我国,桉树作为一种外来树种,目前主要栽培于南方的广东、广西、海南、福建、云南、贵州、湖南、江西等省区,约有130万hm2,并且正在以较快的速度增长,预计在未来10年中,面积将会增加1倍(FAO, 2001)。

但随着大面积桉树人工纯林的营造,也出现了一些负面的影响。由于桉树生长快,光合作用强,利用的水分也必然多,有人便因此认为“桉树是抽水机”、“桉树林过度消耗水分”,因而破坏了区域水量平衡,减少了流域产流量或地下水补给(白嘉雨等, 1996)。桉树人工林的种植对水文循环的影响已成为争论和关注的焦点问题之一。本文综述了桉树人工林在世界及中国的发展对水文循环影响的研究结果,以更好地理解桉树人工林的水文生态作用,加深桉树人工林水文循环的研究,为我国南方桉树人工林发展区域的林水关系合理调控、林业生态环境建设、区域水资源管理等提供理论依据和技术支持。

1 桉树人工林的蒸散耗水

蒸发散是水文循环的重要组成部分,也是水量平衡的重要消耗项,它通常由冠层截留蒸发、树木蒸腾和林地蒸发等部分组成。本部分从桉树人工林的密度、叶面积指数、土壤水分与灌溉、林分年龄以及植被变化等方面来分析桉树人工林对蒸散耗水的影响。

1.1 桉树林对截留的影响

不同区域桉树人工林对降水的截留量差异较大,并受多种因素的影响。在西澳大利亚干旱地区,其降水截留率可达22.7% (White et al., 2002);而在南非,巨桉(Eucalyptus grandis)冠层年截留率仅为4%(Dye, 1996a);印度南部半干旱区赤桉(E. camaldulensis)成熟林分的年截留率为10% (Hall et al., 1992);巴西9年生巨桉人工林的年降水截留率为11%,旱季降雨强度较小时的截留率更大(Soares et al., 2001)。从澳大利亚、印度、以色列等国已有研究来看,桉树林的年降水截留率多介于10%~34%, 且随降雨量的增大而减少(Feller, 1981)。

桉树人工林与其他植被类型的转换会改变冠层结构及其降雨截留过程,进而影响其截留量。Putuhena等(2000)在澳大利亚新南威尔士州Lidsdale研究结果表明,在桉树老龄林皆伐后种植辐射松(Pinus radiata)的最初4年,冠层截留率由14.8%降至1.1%,森林地被物截留由8.1%降为0.4%,但造林后11年,辐射松人工林的冠层和地被物的截留量分别占到总降水量的8%~14%和25%~28%,而对照处理桉树人工林的冠层和枯落物截留率仅为13%~16%和4%~10%。通常,受冠层结构的影响,桉树林的截留量小于针叶林的,这也与针叶树叶面积大,生长期长,不受季节变化等有关(Dunin et al., 1982)。

林分年龄对冠层截留也有一定的影响。Langford等(1978)发现,34年生的萌生桉树林的截留率高于160年生的成熟桉树人工林,30年生的桉树林的最大截留率为26%,此后逐渐下降,240年的成熟林分截留率降低为17%。

1.2 桉树人工林的蒸腾量

桉树人工林的蒸腾量多介于0.5~6.0 mm·d-1,集中于2~4 mm·d -1。一般情况下,完全郁闭桉树林的蒸腾量可能会达到其最大值,5年生冠层郁闭的大桉(Eucalyptus delegatensis)和亮果桉(E. nitens)人工林的蒸腾量达5~6 mm·d-1(Honeysett et al., 1992);巨桉人工林的蒸腾量介于1.1~6.5 mm·d-1 (Kallarackal et al., 1997a; Soares et al., 2001);David等(1997)测得葡萄牙的蓝桉(E. globulus)林分蒸腾量为0.5~3.6 mm·d-1;我国雷州半岛的河头和纪家尾叶桉(E. urophylla)人工林的蒸腾量分别为1.53 mm·d-1和1.49 mm·d-1 (张宁南等,2007; 2003)。

桉树林蒸腾量季节差异较大,一般湿季蒸腾量要明显高于旱季蒸腾量(Calder et al., 1992Cook et al., 1998张宁南等, 2007; Morris et al., 2004),生长季蒸腾量要高于非生长季蒸腾量(Hunt et al., 1998)。

1.3 叶面积指数和林分密度对桉树林蒸腾的影响

蒸腾作用与叶面积的关系相当密切。研究发现单位叶面积耗水量与桉树种类无关,在月降水量均匀分布的温带地区、夏季长期干旱的天然林、干湿交替的热带天然林地以及半干旱盐碱地的研究表明,所有树种的叶面积与日均耗水量均呈极显著的线性相关(Hatton et al., 1998)。林内降水与叶面积指数(LAI)间存在一定的相关性,澳大利亚各种常绿植物群落的LAI与蒸发指数和林内降水量之间也呈类似的相关性(Specht et al., 1989)。另一方面,植物为适应长期的水分需求,常会调节其叶面积指数(Hatton et al., 1995),以调节其蒸腾作用。

林分密度差异也会导致其LAI出现较大变化,从而影响其蒸腾速率。研究表明,在其他条件相同的情况下,印度南部地区细叶桉(E. tereticornis)人工林的林分密度由1 800株·hm-2降低为1 090株·hm-2后,叶面积指数由2.17降低为0.60,蒸腾速率则由3.5~7.7 mm·d-1降为2.0~4.9 mm·d-1,其年蒸腾量由1 563 mm减少为853 mm(Kallarackal et al., 1997b)。

1.4 土壤水分与灌溉对蒸散的影响

土壤水分是影响树木蒸腾的重要影响因素,土壤水分亏缺会限制树木蒸腾,充足的水分供应会提高树木蒸腾量。而灌溉可以供给土壤更多的水分,促进桉树生长,增加树木蒸腾作用。Myers等(1998a; 1998b; 1996)研究表明,巨桉人工林经灌溉后,3年生林分蒸腾量达8.0 mm·d-1,5年生林分蒸腾量达4.3 mm·d-1,灌溉条件下其实际蒸散量已接近潜在蒸散量。Theiveyanathan等(20002001)研究发现,在澳大利亚新南威尔士Deniliquin,经灌溉但吸取地下水量较小的巨桉人工林的年蒸散量仅为950 mm,当不进行灌溉时,其蒸散量仅为400~600 mm。

1.5 林龄对蒸散的影响

随着林分年龄的变化,森林结构通常会发生一定变化,因而会影响其能量吸收和对水分的利用。桉树林的水分利用随林龄增加有明显的变化(Langford, 1976Jayasuriya et al., 1993)。一般而言,桉树的蒸腾量随年龄的增加而减小(Roberts et al., 2001Vertessy et al., 2001)。桉树林冠层的年总蒸散量从15年生时的1 371 mm降至240年生时的911 mm,占水量平衡总量比例从76.2%降至50.6%(Vertessy et al., 2001)。

1.6 植被变化与桉树林蒸散

不同植被类型间的蒸散量存在较大差异。在降水量分别为600, 800, 1 300, 1 500和1 800 mm时,完全为桉树的集水区蒸散量比完全为草地的集水区多40, 90, 215, 240和250 mm(Holmes et al., 1986)。Zhang等(2001)发现在1 500 mm降水量的情况下,森林和草地之间平均蒸散量差值达345 mm,灌丛的蒸散量介于草地和森林之间。Gush(2006)的模拟结果表明,将草地转变成人工林,会增加蒸散量,但森林与草地的降水与蒸散量差值随降水量增加而增大。Dye等(1995)研究表明当草地或灌丛被桉树林替代后,植被的总耗水量增加,河川径流量减少。由此可见,当桉树人工林代替草地或灌丛后,其蒸散量增加。

2 桉树人工林的产水量 2.1 砍伐对产水量的影响

砍伐桉树人工林导致流域产水量增加。桉树人工林被皆伐后会立即且显著地增加总径流量,如遇干旱年份,径流增加可能不十分显著,皆伐对水文影响的持续时间较短,其径流恢复过程仅需1~2年(David et al., 1994)。对巴西圣保罗州一个7 hm2的集水区径流观测表明7年生的桉树人工林被皆伐后,其原已完全消失的径流又重新出现,而没有砍伐流域的桉树人工林无径流出现(Vital et al., 1999)。桉树林被皆伐后,集水区产水量显著增加(Bren et al., 2004; Cornish,1993Camara et al., 1999),但Cornish(1993)认为皆伐面积低于总面积20%时径流无显著增加。桉树林砍伐后,在土壤厚度较大的集水区,其径流增加主要是由于基流量增加引起的,而土层较薄的集水区的暴雨径流增加较大(Cornish et al., 2001)。研究表明,皆伐对径流的影响以皆伐后第2年最大(Langford et al., 1980; Lima, 1984)。间伐桉树林也会减少水分消耗,增加流域产水量(Jayasuriya et al., 1993; Lane et al., 2001),但间伐后的集水区径流增加主要是由于基流变化引起的(Lane et al., 2001)。

2.2 造林对产水量的影响

造林会导致径流量减少。当草地或灌丛被外来树种代替后,植被的总耗水量增加,河川径流量减少。目前全球造林导致平均减少径流38%,年减少径流180 mm,大约有13%的河流在造林后完全干枯1年以上(Jackson et al., 2005)。

营造桉树人工林也会降低流域产流量(Bosch et al., 1982),而且流域产流量下降的程度与桉树的生长速率、冠层盖度和土壤深度有关(Bosch et al., 1982; Cornish et al., 2001)。Vital等(1999)研究发现,巴西圣保罗地区原始植被为牧草地,营造柳叶桉(E. saligna)人工林后集水区径流量减少,至造林后7年径流完全消失。Scott等(1997)在南非Mokobulaan集水区研究发现,在草地营造巨桉和展叶松(Pinus patula)林后,营造桉树林后的第3年径流量显著减少,造林后第9年河道完全干枯,而营造松树人工林后第4年径流显著减少,第12年河流完全干枯。在南非Mpumalanga省的研究发现,当草地营造为松树和桉树林后6~12年,溪流完全干枯(van Lill et al., 1980)。印度南部草地与蓝桉人工林对比集水区研究发现,第1个轮伐期(10年)桉树人工林的产流量比天然草地减少16%,旱季基流量减少23%(50%概率) (Samraj et al., 1988),而第2个轮伐期萌生桉树林占流域面积的59%,其年均径流量比天然草地减少25.4%,基流量减少27%(Samra et al., 2001; Sharda et al., 1998)。天然草地转换为桉树林导致低流量(low flow)和高峰流量(high flow)减少,且第2轮伐期的减少更加明显,而对洪水来说,其洪峰流量变化并不显著(Sikka et al., 2003)。

2.3 林分年龄对产水量的影响

林分年龄对径流产生也有重要影响,一般趋势表现为造林初期产水量降低,达到一定的林分年龄后,林分生长逐渐缓慢,甚至停止生长,结构快速变化,其蒸腾耗水量和冠层截留量开始减少,径流量开始持续恢复并逐渐恢复至造林前水平(Kuczera, 1987)。林分年龄与流域年均径流量显著相关(Haydon et al., 1997; Vertessy et al., 2001),但在年径流量差异中,75%的差异是由于树木蒸腾引起的,25%是由于冠层截留变化引起的(Haydon et al., 1997)。

2.4 火烧对产水量的影响

火烧后桉树林集水区产水量最初增加,由于地表枯落物及植被的覆盖减少,也导致了土壤流失量增加(Prosser et al., 1998),随后随桉树的生长,3~5年内逐渐恢复至火烧前的水平(Brown, 1972; Langford,1976)。火烧后集水区的基流量、径流量和洪峰流量较对照流域均增加,且径流的日波动消失(Mackay et al., 1980),径流增加主要是由于快速地表径流引起的(O'Loughlin et al., 1982)。

3 桉树人工林对土壤水分及地下水的影响

桉树是否会抽取地下水以及对地下水的影响,是目前桉树人工林水文学研究的焦点问题之一。White等(2002)认为干旱区(年降水量440 mm)桉树会抽取浅层地下水。桉树作为外来树种时,能够十分迅速扩展其根系范围,1年生桉树根系可伸展至3 m以下的区域(Bouillet et al., 2002),桉树根系向地下水层穿透的速率约为2.5 m·a-1以上, 大概相当于树木年生长高度,根系长可达7.4 m以上(Calder et al., 1992),而南非3~4年生巨桉的根系能够从8 m深的地下吸收水分(Dye, 1996b)。

Calder等(1992)研究发现,在干旱区,桉树幼龄林的耗水量接近本地落叶林,与当地降水量相当,接近农作物耗水量的2倍;经3个干旱年的观测发现,在干旱区的深层土壤区,桉树人工林的耗水量远高于降水量(模型模拟估计3年间蒸散耗水量为3 400 mm,实际降水量为2 100 mm),但未发现桉树根系抽取地下水的直接证据。Calder等(1997)研究发现在年降水量600~800 mm的印度Bangalore地区,桉树人工林耗水量超过降水量约350 mm。从已有研究推断,干旱地区或干旱年份桉树人工林有可能会吸收浅层地下水,但在中国关于桉树是否抽取地下水的问题,目前还没有相关证据,未来需加强相关的研究与观测。

4 问题与展望

目前对桉树人工林水文影响与效应研究已经有了显著的成果,但由于地域差异、气候、地形地貌、土壤、水文等诸多要素的复杂性和综合性,桉树林的水文影响研究还存在一些问题:1)目前的研究多是在桉树人工林植被变化前后几年的观测结果,研究时间相对较短,并无系统的综合性过程性研究,而且不同地区的研究方法和手段缺乏可比性;2)我国桉树林对大气降雨的影响机制与过程研究还较少,缺乏土壤、植物、大气的整体性研究,未考虑水文过程研究的尺度效应,目前研究的尺度均偏小;3)目前我国对桉树人工林的水文影响研究还较少,虽然对桉树林的蒸腾耗水有少量的研究,但研究地点单一,无法系统证明我国桉树人工林的水文影响;而桉树人工林对流域径流的影响还未见相关的报道,缺乏系统的研究;4)我国桉树人工林的水文影响的长期定位研究还很少,目前只有中国林业科学研究院热带林业研究所正在对桉树人工林集水区的水文影响进行研究,但无法反映不同区域、气候、土壤类型下桉树人工林的水文影响。

针对桉树人工林生态水文影响以及我国研究的现状,建议我国在未来桉树人工林生态水文研究领域的主要研究方向与重点集中于以下几个方面:1)桉树人工林水文过程的长期定位观测;2)中国南方桉树人工林的蒸发散及作用机制;3)桉树人工林生态用水与地下水的关系及作用机制;4)短轮伐期与连栽桉树对流域生态耗水和径流的影响机制及合理调控;5)具有物理机制的桉树人工林水文过程模型的研究与开发;6)桉树人工林水文循环过程及其尺度效应;7)桉树人工林水文影响的区域研究与评价。

参考文献(References)
白嘉雨, 甘四明. 1996. 桉树人工林的社会、经济和生态问题[J]. 世界林业研究, 9(2): 63-68.
张宁南, 徐大平, JimMorris, 等. 2003. 雷州半岛尾叶桉人工林树液茎流特征的研究[J]. 林业科学研究, 16(6): 661-667. DOI:10.3321/j.issn:1001-1498.2003.06.002
张宁南, 徐大平, JimMorris, 等. 2007. 雷州半岛尾叶桉人工林耗水量研究[J]. 林业科学研究, 20(1): 1-5. DOI:10.3321/j.issn:1001-1498.2007.01.001
Bosch J M, Hewlett J D. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evaporations[J]. Journal of Hydrology, 55: 3-23. DOI:10.1016/0022-1694(82)90117-2
Bouillet J P, Laclau J P, Arnaud M, et al. 2002. Changes with age in the spatial distribution of roots of Eucalyptus clone in Congo: Impact on water and nutrient uptake[J]. Forest Ecology and Management, 171: 43-57. DOI:10.1016/S0378-1127(02)00460-7
Bren L, Hopmans P. 2004. Observations on the water use of mature eucalypt and immature radiata pine forests in Victoria, Australia. Proceedings of Forest Management Workshop, Canberra.
Brown J A H. 1972. Hydrologic effects of a bush fire Ⅰ: a catchment in south-estern New South Wales[J]. Journal of Hydrology, 15: 77-96. DOI:10.1016/0022-1694(72)90077-7
Calder I R, Hall R L, Adlard P G. 1992. Growth and water use of forest plantations[M]. Chichester: John Wiley and Sons.
Calder I R, Rosier P T W, Prasanna K T, et al. 1997. Eucalyptus water use greater than rainfall input—a possible explanation from southern India[J]. Hydrology and Earth System Sciences, 1(2): 249-256. DOI:10.5194/hess-1-249-1997
Câmara C D, Lima W P. 1999. Corte raso de uma plantação de Eucalyptus saligna de 50 anos: imactis sobre a ciclagem de nutrientes em uma microbacia experimental[J]. Scientia Forestalis, 57: 99-109.
Cook P G, Hatton T J, Pidsley D, et al. 1998. Water balance of a tropical woodland ecosystem, Northern Australia: a combination of micro-meteorological, soil physical and groundwater chemical approaches[J]. Journal of Hydrology, 210: 161-177. DOI:10.1016/S0022-1694(98)00181-4
Cornish P M, Vertessy R A. 2001. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest[J]. Journal of hydrology, 242: 43-63. DOI:10.1016/S0022-1694(00)00384-X
Cornish P M. 1993. The effects of logging and forest regeneration on water yields in a moist eucalypt forest in New South Wales, Australia[J]. Journal of Hydrology, 150: 301-322. DOI:10.1016/0022-1694(93)90114-O
David J S, Henriques M O, David T S, et al. 1994. Clearcutting effects on streamflow in coppiced Eucalyptus globulus stands in Portugal[J]. Journal of Hydrology, 162: 143-154. DOI:10.1016/0022-1694(94)90008-6
David T S, Ferreira M I, David J S, et al. 1997. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit[J]. Oecologia, 110: 153-159.
Dunin F X, Mackay S M. 1982. Evaporation by eucalypt and coniferous plant communities//O'Loughlin E M, Bren L J. The first national symposium on forest hydrology. Melbourne, 11-13 May 1982. The Institute of Engineers, Australia. Preprints of papers, 18-25.
Dye P J, Olbrich B W, Everson C S. 1995. The water use of plantation forests and montane grassland in summer-rainfall forestry regions in South Africa//Proceedings of the Seventh South African National Hydrological Symposium. Institute for Water Research, Grahamstown.
Dye P J. 1996a. Climate, forest and streamflow relationships in South African afforested catchments[J]. Comm For Rev, 75: 31-38.
Dye P J. 1996b. Response of Eucalyptus grandis trees to soil water deficits[J]. Tree Physiology, 16: 233-238. DOI:10.1093/treephys/16.1-2.233
FAO. 2001. Global forest resources assessment 2000: main report. FAO Forestry Paper 140, United Nations Food and Agricultural Organization, Rome, Italy, 511.
Feller M C. 1981. Water balances in Eucalyptus regnans, E.obliqua and Pinus radiata forests in Victoria[J]. Australian Forestry, 44: 153-161. DOI:10.1080/00049158.1981.10674308
Gush M. 2006. Modelling streamflow reductions resulting from commercial afforestation in South Africa: From research to application. Beijing Water Conference of "International Conference on Forest and Water in a Changing Environment". Beijing, China, August 8-10, 2006.
Hall R L, Calder I R, Rosier P T W, et al. 1992. Measurements and modelling of interception loss from a Eucalyptus plantation in southern India//Calder I R, Hall R L, Adlard P G. Growth and Water Use of Forest Plantations. Wiley, Chichester, 270-289.
Hatton T, Reece P, Taylor P, et al. 1998. Does leaf water efficiency vary among eucalypts in water-limited environments[J]. Tree Physiology, 18: 529-536. DOI:10.1093/treephys/18.8-9.529
Hatton T, Wu H. 1995. Scaling theory to extrapolate individual tree water use to stand water use[J]. Hydrological Process, 9: 527-540. DOI:10.1002/(ISSN)1099-1085
Haydon S R, Benyon R G, Lewis R. 1997. Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F. Muell.)[J]. Journal of Hydrology, 187(3/4): 351-366.
Holmes J W, Sinclair J A. 1986. Streamflow from some afforested catchments in Victoria. Hydrology and Water Resources Symposium, Griffith University, Brisbane, 25-27 November 1986. The Institute of Engineers, Australia, Preprints of papers, 214-218.
Honeysett J L, Beadle C L, Turnbull C R A. 1992. Evapotranspiration and growth of two contrasting species of eucalypts under non-limiting and limiting water availability[J]. Forest and Ecology Management, 50: 203-216. DOI:10.1016/0378-1127(92)90336-8
Hunt M A, Beadle C L. 1998. Whole-tree transpiration and water-use partitioning between Eucalyptus nitens and Acacia dealbata weeds in a short-rotation plantation in northeastern, Tasmania[J]. Tree Physiology, 18: 557-563. DOI:10.1093/treephys/18.8-9.557
Jackson R B, Jobbagy E G, Avissar R, et al. 2005. Trading water for carbon with biological carbon sequestration[J]. Science, 310: 944-947.
Jayasuriya M D A, Dunn G, Benyon R, et al. 1993. Some factors affecting water yield from mountain ash (Eucalyptus regnans) dominated forests in south-eastern Australia[J]. Journal of Hydrology, 150(2-4): 345-367. DOI:10.1016/0022-1694(93)90116-Q
Kallarackal J, Somen C K. 1997a. An ecophysiological evaluation of the suitability of Eucalyptus grandis for planting in the tropics[J]. Forest Ecology and Management, 95: 53-61. DOI:10.1016/S0378-1127(97)00004-2
Kallarackal J, Somen C K. 1997b. Water use by Eucalyptus tereticornis stand of differing density in southern India[J]. Tree Physiology, 17: 195-203. DOI:10.1093/treephys/17.3.195
Kuczera G. 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest[J]. Journal of Hydrology, 94: 215-236. DOI:10.1016/0022-1694(87)90054-0
Lane P N J, Mackay S M. 2001. Streamflow response of mixed-species eucalypt forests to patch cutting and thinning treatments[J]. Forest Ecology and Management, 143(1-3): 131-142. DOI:10.1016/S0378-1127(00)00512-0
Langford K J, Moran R J, O'Shaughnessy P J. 1980. The North Maroondah experiment pre-treatment phase comparison of catchment water balance[J]. Journal of hydrology, 46: 123-145. DOI:10.1016/0022-1694(80)90039-6
Langford K J. 1976. Change in yield of water following a bushfire in a forest of Eucalyptus regnans[J]. Journal of Hydrology, 29: 87-114. DOI:10.1016/0022-1694(76)90007-X
Langford K J, O'Shaughnessy P J. 1978. A study of canopy interception in native forests and conifer plantations. Melbourne and Metropolitan Board of Works, Catchment Hydrology Research Report Number MMBW-W-0007, 88.
Lima W P. 1984. The hydrology of Eucalypt forests in Australia—A review[J]. IPEF, 28: 11-32.
Mackay S M, Michell P A, Young P C. 1980. Hydrologic changes after wildfire in small catchments near Eden, NSW. The Institution of Engineers, Australia. National Conference Publication 80/9, 149-155.
Morris J, Zhang N N, Yang Z J, et al. 2004. Water use by fast-growing Eucalyptus urophylla plantations in southern China[J]. Tree Physiology, 24: 1035-1044. DOI:10.1093/treephys/24.9.1035
Myers B J, Benyon R G, Theiveyanathan S, et al. 1998a. Response of effluent-irrigated Eucalyptus grandis and Pinus radiata to salinity and vapor pressure deficits[J]. Tree Physiology, 18: 565-573. DOI:10.1093/treephys/18.8-9.565
Myers B J, Williams R J, Fordyce I, et al. 1998b. Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of Northern Australia[J]. Australia Journal of Ecology, 23: 329-339. DOI:10.1111/aec.1998.23.issue-4
Myers B J, Theiveyanathan S, O'Brien N D, et al. 1996. Growth and water use of Eucalyptus grandis and Pinus radiate irrigated with effluent[J]. Tree Physiology, 16: 211-219. DOI:10.1093/treephys/16.1-2.211
O'Loughlin E M, Cheney N P, Burns J. 1982. The Bushranges experiment hydrologic response of eucalypt catchment to fire. National symposium on forest hydrology, Melbourne.
Prosser I P, Williams L. 1998. The effect of wildfire on runoff and erosion in native Eucalyptus forest[J]. Hydrological Processes, 1(2): 251-265.
Putuhena W, Cordery I. 2000. Some hydrological effects of changing forest cover from eucalypts to Pinus radiata[J]. Agricultural and Forest Meteorology, 100: 59-72. DOI:10.1016/S0168-1923(99)00086-6
Roberts S, Vetessy R, Grayson R. 2001. Transpiration from Eucalyptus sieberi(L.Johnson) forests of different age[J]. Forest Ecology and Management, 143: 153-161. DOI:10.1016/S0378-1127(00)00514-4
Samra J S, Sikka A K, Sharda V N. 2001. Hydrological implications of planting Bluegum in natural Shola and grassland watersheds of Southern India//Stott D E, Mohtar R H, Steinhardt G C. Sustaining the global farm. Selected papers from the 10th international soil conservation organization meeting. May 24-29, 1999. Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, 338-343.
Samraj P, Sharda V N, Chinnamani S, et al. 1988. Hydrological behaviour of the Nilgiri sub-watersheds as affected by bluegum plantations part Ⅰ. The annual water balance[J]. Journal of Hydrology, 103: 335-345. DOI:10.1016/0022-1694(88)90142-4
Scott D F, Lesch W. 1997. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa[J]. Journal of Hydrology, 199(3/4): 360-377.
Sharda V N, Samraj P, Samra J S, et al. 1998. Hydrological behaviour of first generation coppiced bluegum plantations in the Nilgiri sub-watersheds[J]. Journal of Hydrology, 211: 50-60. DOI:10.1016/S0022-1694(98)00193-0
Sikka A K, Samra J S, Sharda V N, et al. 2003. Low flow and high flow responses to converting natural grassland into bluegum (Eucalyptus globulus) in Nilgiris watersheds of South India[J]. Journal of Hydrology, 270(1/2): 12-26.
Soares J V, Almeida A C. 2001. Modeling the water balance and soil water fluxes in a fast growing Eucalyptus plantation in Brazil[J]. Journal of Hydrology, 253: 130-147. DOI:10.1016/S0022-1694(01)00477-2
Specht R L, Specht A. 1989. Canopy structure in Eucalyptus-dominated communities in Australia along climate gradient[J]. Acta Oecol Oecol Plant, 10: 191-213.
Theiveyanathan S, Benyon R, Polglase P, et al. 2000. Irrigation management for tree plantations in the southern Murray-Darling Basin//Connellan G J.
Proceedings of the Irrigation Association of Australia 2000 National Conference on Water-Essential for Life, Melbourne, 23-25 May, 2000, 52-61.
Theiveyanathan S, Benyon R G, Polglase P, et al. 2001. Tree plantations for controlling water tables in irrigation districts of the southern Murray-Darling Basin//Proceedings of the 7th National PURSL Conference on Productive Use and Rehabilitation of Saline Lands. Launceston, Australia, 20-23 March 2001, 81-87.
Van Lill Lill W S, Kruger F J, van Wyk Wyk D B. 1980. The effect of afforestation with Eucalyptus grandis Hill ex Maiden and Pinus patula Schlecht. Et. Cham. on streamflow from experimental catchments at Mokubalaan, Transvaal[J]. Journal of Hydrology, 48: 107-118. DOI:10.1016/0022-1694(80)90069-4
Vertessy R A, Walson F G R, O'Sullivan S K. 2001. Factors determining relations between stand age and catchment water balance in mountain ash forests[J]. Forest Ecology and Management, 143: 13-26. DOI:10.1016/S0378-1127(00)00501-6
Vital A R T, Lima W P, Camargo F R A. 1999. Efeitos do corte raso de uma plantação de Eucalyptus sobre o balanço hidrico, a qualidade da água e as perdas de solo e de nutrientes em uma microbacia no Vale do paraaiba, SP[J]. Scientia Forestalis, 55: 5-16.
White D A, Dunin F X, Turner N C, et al. 2002. Water use by contour-planted belts of trees comprised of four Eucalyptus species[J]. Agricultural Water Management, 53: 133-152. DOI:10.1016/S0378-3774(01)00161-5
Zhang L, Dawes W R, Walker G R. 2001. Response of mean annual evapotranspiration to vegetation changes at a catchment scale[J]. Water Resources Research, 37(3): 701-708. DOI:10.1029/2000WR900325