林业科学  2007, Vol. 43 Issue (3): 133-137   PDF    
0

文章信息

朱道弘, 贺一原, 赵吕权, 黄向东, 阳艳萍.
Zhu Daohong, He Yiyuan, Zhao Lüquan, Huang Xiangdong, Yang Yanping.
栗瘿蜂体内Wolbachia的感染及其wsp基因序列分析
Sequencing and Phylogenetic Analysis of the wsp Gene of Wolbachia in a Gallwasp Species, Dryocosmus kuriphilus (Hymenoptera: Cynipidae)
林业科学, 2007, 43(3): 133-137.
Scientia Silvae Sinicae, 2007, 43(3): 133-137.

文章历史

收稿日期:2006-07-21

作者相关文章

朱道弘
贺一原
赵吕权
黄向东
阳艳萍

栗瘿蜂体内Wolbachia的感染及其wsp基因序列分析
朱道弘, 贺一原, 赵吕权, 黄向东, 阳艳萍     
中南林业科技大学资源与环境学院 长沙 410004
关键词:Wolbachia    wsp基因    序列分析    产雌孤雌生殖    栗瘿蜂    
Sequencing and Phylogenetic Analysis of the wsp Gene of Wolbachia in a Gallwasp Species, Dryocosmus kuriphilus (Hymenoptera: Cynipidae)
Zhu Daohong, He Yiyuan, Zhao Lüquan, Huang Xiangdong, Yang Yanping     
College of Resource and Environment, Central South University of Forestry & Technology Changsha 410004
Abstract: Alpha proteobacteria of the genus Wolbachia are a widespread group of maternally inherited endosymbionts of arthropod and nematode hosts. Wolbachia infection induces a range of host phenotypes, including cytoplasmic incompatibility, male killing, feminization and thelytoky induction. Heterogony (cyclical parthenogenesis) is a remarkable characteristic of oak gall wasps, Cynipini, which is the largest tribe in Cynipidae. A few species of Cynipini are exceptionally, which are univoltine and exhibit thelytokous parthenogenesis, probably due to deletion of the arrhenotokous generation from their heterogonic ancestor species with Wolbachia infection. In this study, the presence of Wolbachia was detected using polymerase chain reaction (PCR) primers for the wsp genes in a thelytokous species (Dryocosmus kuriphilus) of the Cynipini. The wsp characteristic 617 bp product was obtained after amplification of extracts from Zhuzhou population. The sequence clearly conformed to Wolbachia group A and was nearly identical to that of Plagiotrochus quercusilicis. The possible implications of Wolbachia infection in the gallwasp are discussed.
Key words: Wolbachia    wsp gene    sequence analysis    thelytoky    Dryocosmus kuriphilus    

Wolbachia是一类以节肢动物及线虫为宿主的细胞质共生细菌,属于Proteobacteria的α亚门。其传播方式主要为垂直传播,即母代感染的细菌经卵细胞的细胞质传播至子代(Stouthamer et al., 1999)。Wolbachia能对被感染昆虫等节肢动物的生殖方式进行调控,如引起宿主胞质不亲和(cytoplasmic incompatibility)、诱导孤雌生殖(parthenogenesis-inducing)、雌性化(feminizing)及雄性致死(male-killing)(Werren, 1997; Stouthamer et al., 1999)。根据近年的研究,感染Wolbachia的昆虫种类估计超过17%(Werren et al., 1995; 2000;West et al., 1998),一些学者甚至推测感染昆虫的种类可能达到76%(Jeyaprakash et al., 2000)。Wolbachia有可能是自然界分布最广、丰度最大的共生菌。在膜翅目昆虫中,许多寄生蜂种类的产雌孤雌生殖(thelytoky)被证实与Wolbachia的共生有关(Stouthamer et al., 1993; Chen et al., 1992Arakaki et al., 2001; Huigens et al., 2004),还发现Wolbachia能引起一些种类寄生蜂的胞质不亲和(Breeuwer et al, 1993; Perrot-Minnot et al., 1996; Vavre et al., 2000)。

瘿蜂科昆虫主要危害壳斗科植物,亦有一些种类危害蔷薇科、菊科等,一般于危害部位形成虫瘿。瘿蜂科可划分为6个族,即Aylacini族(危害草本植物)、Eschatocerini族[危害金合欢属(Acacia)和牧豆树属(Prosopis)植物]、Diplolepidini族[危害蔷薇属(Rosa)植物]、Synergini族(本身不形成虫瘿,寄居于其他瘿蜂形成的虫瘿内)、Pediaspidili族[危害槭属(Acer)植物]及Cynipini族[危害栎(Quercus)属、栗属(Castanea)及其近缘属](Lijeblad et al., 1998; Ronquist, 1999)。Aylacini族、Eschatocerini族、Diplolepidini族和Synergini族主要进行产雄孤雌生殖(arrhenotoky)(孤雌生殖中所产生的后代都是雄性的生殖方式),在Aylacini族和Diplolepidini族中亦有一些种类进行产雌孤雌生殖(Askew, 1984; Plantard et al., 19981999)。Pediaspidili族和Cynipini族进行周期性的孤雌生殖,即孤雌生殖与两性生殖周期性发生的生殖方式(Askew, 1984; Atkinson et al., 2002; Stone et al., 2002)。Cynipini族种类最多,已知有44属974种,多数种类进行周期性孤雌生殖,但也有一些种类营产雌孤雌生殖(Lijeblad et al., 1998; Ronquist, 1999)。这些种类的产雌孤雌生殖,很有可能与Wolbachia的共生有关,因Wolbachia的影响导致产雄孤雌生殖世代的缺失(Abe, 1986; Stone et al., 2002)。

栗瘿蜂(Dryocosmus kuriphilus属瘿蜂科Cynipini族,主要危害板栗(C. mollissima),也危害茅栗(C. sequinii)和锥栗(C. henryi)。受害芽春季形成瘤状虫瘿。国内分布于陕西、河北、山东、河南、湖北、湖南、福建等省,国外分布于日本、朝鲜。1年发生1代,营孤雌生殖(靳杏蕊等,1995吴晖等,2004丁玉洲等,2004)。本文通过PCR法对栗瘿蜂的株洲种群共生Wolbachia进行了检测, 并对其wsp基因序列进行了测定,通过与已知瘿蜂科中其他种类Wolbachiawsp基因序列对比, 确定了株洲种群栗瘿蜂共生Wolbachia的进化位置,为进一步探讨Wolbachia对其孤雌生殖的诱导提供了基础。

1 材料与方法 1.1 材料

栗瘿蜂的虫瘿于2004年5月采自湖南省株洲市中南林业科技大学株洲校区标本园,采集的带虫瘿的板栗枝条基部以吸水的脱脂棉包被置于(25±1) ℃的人工气候室内(宁波江南仪器设备厂),羽化成虫以无水乙醇浸泡,于-20 ℃的冷冻柜保存备用。

1.2 总DNA的提取

每次进行DNA提取时,以超纯水洗涤后的栗瘿蜂成虫1个体置于装有50 μL STE缓冲液(100 mmol·L-1 NaCl, 10 mmol·L-1 Tris-HCl, 1 mmol·L-1 EDTA, pH 8.0)的1.5 mL离心管内, 将其充分捣碎。加SDS至终浓度为1%,加蛋白质分解酶K(20 mg·mL-1), 37 ℃水浴加温30 min。加等量的PCL (苯酚:氯仿:异戊醇= 25:24:1)抽提,5 000 r·min-1离心10 min,取上清液,再加等量PCL抽提,5 000 r·min-1离心10 min,取上清液,然后,加1/10体积3 mol·L-1醋酸钠,加2.5倍体积无水乙醇-20 ℃过夜,经低温离心,去上清液,用75%冷乙醇洗涤, 低温离心去上清液、干燥后, 获纯净DNA。加TE缓冲液溶解DNA备用。

1.3 Wolbachiawsp基因片段的PCR扩增

使用的wsp基因特异性引物为wsp81F(5′-TGGTCCAATAAGT GATGAAGAAAC-3′)和wsp 691R(5′-AAAAATTAAACGCTACTCCA-3′。PCR扩增体积为25 μL, 包括2 μL模板DNA, 17.1 μL H2O, 2.5 μL 10×buffer, 1 μL dNTPs (10 mmol·L-1), 上游和下游引物(10 μmol·L-1)各1 μL以及0.4 μL Taq DNA聚合酶(2.5 U·μL-1)。PCR扩增循环是: 95 ℃预变性3 min, 95 ℃ 30 s, 52 ℃ 30 s, 72 ℃ 1 min, 共35个循环, 循环结束后72 ℃处理7 min。

PCR扩增产物用1.0 %的琼脂糖凝胶于0.5×TBE缓冲液中电泳, 电压70 V, 电泳时间约1 h。电泳后以溴化乙锭染色, 凝胶成像系统检测并摄影。DNA分子质量采用Fermentas公司的DNA MW Maker标记。以水为阴性对照。

1.4 Wolbachiawsp基因片段序列测定与分析

采用克隆测序方法,回收后的PCR产物与pMD18-T载体(大连宝生物公司)连接,再转化到感受态大肠杆菌中,筛选阳性克隆, 随机挑选3个克隆产物由上海英俊生物技术有限公司进行序列测定,以它们的一致序列为准。DNA序列检索和同源性比较利用BLAST工具(NCBI)。利用Clustal X软件对所测得的Wolbachiawsp基因序列以及GenBank中已知的其他瘿蜂Wolbachiawsp基因序列进行序列完全排列,用支序系统学PHYLIP 3.6a软件包进行1 000次的自导复制(bootstrap replication), 用DNADIST程序根据Kimura's 2-parameter模型计算遗传距离, 在NEIGHBOR程序中用邻位相连法(neighbour-joining analysis)获得聚类图, 最后在CONSENSE程序中形成系统进化树。

2 结果与分析 2.1 栗瘿蜂共生Wolbachia的PCR检测

利用Wolbachiawsp基因的一对通用引物(81F, 691R),成功地从栗瘿蜂总DNA中扩增到一条600 bp左右的wsp基因片段(图 1), 证实了Wolbachia在我国栗瘿蜂体内的感染。采用克隆测序方法,对该基因片段进行了序列测定。栗瘿蜂Wolbachiawsp基因片段为617 bp,已提交GenBank注册(注册号为DQ493720)。

图 1 栗瘿蜂株洲种群Wolbachiawsp基因片段的PCR扩增 Fig. 1 The PCR amplification of the wsp gene fragment of Wolbachia in Zhuzhou population of D. kuriphilus M:核酸分子量参照Molecular mass marker;1、2、4:栗瘿蜂D. kuriphilus;3:阴性对照(水)Negative control(water).
2.2 栗瘿蜂共生Wolbachiawsp基因序列分析及系统进化树的建立

将栗瘿蜂共生Wolbachiawsp基因序列利用NCBI网站提供的BLAST分析工具,与GenBank中注册的瘿蜂种类共生Wolbachiawsp基因序列进行了同源性比较(表 1)。栗瘿蜂体内的Wolbachiawsp基因序列与GenBank中A大组的其他瘿蜂Wolbachia株的同源性在88.7%~83.9%之间,与同为产雌孤雌生殖的Plagiotrochus quercusilicis体内的wQue株的同源性最高。与B大组Ceroptres cerri体内的wCer株的同源性为82.9%。

表 1 栗瘿蜂及其他瘿蜂科种类感染Wolbachiawsp基因序列的同源性及其寄主的繁殖方式 Tab.1 The identity of sequence of the wsp gene of Wolbachia from D. kuriphilus and other species of Cynipidae and the reproductive modes of their hosts

利用Clustal X软件对所测得序列、GenBank中已知的其他瘿蜂以及A大组代表性菌株wSim和B大组代表性菌株wPip、wAlb的wsp基因序列进行排列,用PHYLIP软件进行1 000次的自导复制,获得了NJ系统进化树(图 2)。从系统进化树中可以看出,栗瘿蜂体内共生的Wolbachia与其他多数瘿蜂种类的共生菌株属于A大组。

图 2 栗瘿蜂与其他昆虫种类Wolbachiawsp基因序列的系统进化关系 Fig. 2 The phylogenetic relationship of wsp gene sequence of wolbachia in D. kuriphilus and other insects
3 结论与讨论

Wolbachia是节肢动物体内最为丰富的共生微生物之一(Werren, 1997)。本研究发现栗瘿蜂体内存在Wolbachia的共生,在NJ系统进化树中可以看出,栗瘿蜂体内的Wolba chia与大多数瘿蜂科种类的Wolbachia相同,属于A大组。

瘿蜂科昆虫的生殖方式比较复杂,有产雄孤雌生殖、产雌孤雌生殖以及周期性孤雌生殖;但是,其遗传机制尚不十分清楚(Hebert, 1987; Suomalainen et al., 1987)。Rokas等(2002)对欧洲的64种瘿蜂是否存在Wolbachia的共生进行了检测,仅仅7种检出了Wolbachia,检测种类的共生率较低,为10.9%。瘿蜂科Cynipini族的许多种类营周期性的孤雌生殖(Lijeblad et al., 1998; Ronquist, 1999),对于存在Wolbachia共生的Cynipini族营产雌孤雌生殖的种类,Rokas等(2002)推测其祖先繁殖方式是周期性的孤雌生殖,由于Wolbachia的共生,而导致产雄孤雌生殖世代的缺失。但是,已知感染Wolbachia的种类中,既有产雌孤雌生殖的种类,也有周期性孤雌生殖及产雄孤雌生殖的种类(表 1),可见Wolbachia对瘿蜂生殖的影响较为复杂。就栗瘿蜂而言,产雌孤雌生殖是否与共生的Wolbachia有关,调控机制如何,有待进一步探讨。

参考文献(References)
丁玉洲, 毕守东, 方国飞, 等. 2004. 栗瘿蜂虫瘿形成及发育与发生量关系研究. 应用生态学报, 15: 108-110. DOI:10.3321/j.issn:1001-9332.2004.01.024
靳杏蕊, 田士波, 赵淑娥, 等. 1995. 控制栗瘿蜂形成虫瘿的研究. 林业科学, 31: 77-80.
吴晖, 陈顺立, 黄金聪, 等. 2004. 锥栗品种抗栗瘿蜂性状的评价. 福建林学院学报, 24: 344-348. DOI:10.3969/j.issn.1001-389X.2004.04.013
Abe Y. 1986. Taxonomic status of the Andricus mukaigawae complex and its speciation with geographical parthenogenesis (Hymenoptera: Cynipidae). Appl Entomol Zool, 21: 436-447. DOI:10.1303/aez.21.436
Abe Y, Miura K. 2002. Does Wolbachia induce unisexuality in oak gall wasps?(Hymenoptera: Cynipidae). Ann Entomol Soc Am, 95: 583-586. DOI:10.1603/0013-8746(2002)095[0583:DWIUIO]2.0.CO;2
Arakaki N, Oishi T, Noda H. 2001. Parthenogenesis induced by Wolbachia in Gronotoma micromorpha (Hymenoptera: Eucoilidae). Entomol Sci, 4: 9-15.
Askew R R. 1984. The biology of gall wasps//Ananthakrishnan T N. The Biology of Galling Insects. New Delhi: IBH Publishing Co, 223-271
Atkinson R J, McVean G A T, Stone G N. 2002. Use of population genetic data to infer oviposition behaviour: species-specific patterns in four oak gallwasps (Hymenoptera: Cynipidae). Proceedings of the Royal Society of London: Series B, 269: 383-390. DOI:10.1098/rspb.2001.1820
Breeuwer J A J, Werren J H. 1993. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics, 135: 565-574.
Chen B H, Kfir R, Chen C N. 1992. The thelytokous Trichogramma chilonis in Taiwan. Entomol Exp Appl, 65: 187-194. DOI:10.1111/j.1570-7458.1992.tb01642.x
Hebert P D N. 1987. Genotypic characteristics of cyclic parthenogenesis and their obligately asexual derivatives//Stearns S C. The Evolution of Sex and its Consequences. Basel: Birkhauser-Verlag, 403
Huigens M E, De Almeida R P, Boons P A H, et al. 2004. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proceedings of Royal Society of London: Series B, 271: 1538-1545.
Jeyaprakash A, Hoy M A. 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Bio, 9: 393-405. DOI:10.1046/j.1365-2583.2000.00203.x
Liljeblad J, Ronquist F. 1998. A phylogenetic analysis of higher-level gall wasp relationships (Hymenoptera: Cynipidae). Sys Entomol, 23: 229-252. DOI:10.1046/j.1365-3113.1998.00053.x
Perrot-Minnot M J, Guo L R, Werren J H. 1996. Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics, 143: 961-972.
Plantard O, Rasplus J Y, Mondor G, et al. 1998. Wolbachia-induced thelytoky in the rose gallwasp Diplolepis spinosissimae (Giraud) (Hymenoptera: Cynipidae), and its consequences on the genetic structure of its host. Proceedings of the Royal Society of London, Series B, 265: 1075-1080. DOI:10.1098/rspb.1998.0401
Plantard O, Rasplus J Y, Mondor G, et al. 1999. Distribution and phylogeny of Wolbachia inducing thelytoky in Rhoditini and 'Aylacini' (Hymenoptera: Cynipidae). Insect Mol Bio, 8: 185-191. DOI:10.1046/j.1365-2583.1999.820185.x
Rokas A, Atkinson R J, Brown G S, et al. 2001. Understanding pattern of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep?. Heredity, 87: 294-304. DOI:10.1046/j.1365-2540.2001.00872.x
Rokas A, Atkinson R J, Nieves-Aldrey, et al. 2002. The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol Ecol, 11: 1815-1829. DOI:10.1046/j.1365-294X.2002.01556.x
Ronquist F. 1999. Phylogeny, classification and evolution of the Cynipidae. Zool Scipta, 28: 139-164. DOI:10.1046/j.1463-6409.1999.00022.x
Stone G N, Schonrogge K, Atkinson R J, et al. 2002. The population biology of oak gallwasps (Hymenoptera: Cynipidae). Ann Rev Entomol, 47: 633-668. DOI:10.1146/annurev.ento.47.091201.145247
Stouthamer R, Breeuwer J A J, Hurst G D D. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Ann Rev Micro, 53: 71-102. DOI:10.1146/annurev.micro.53.1.71
Stouthamer R, Luck R F. 1993. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol Exp Appl, 67: 183-192. DOI:10.1111/j.1570-7458.1993.tb01667.x
Suomalainen E, Saura A, Lokki J. 1987. Cytology and evolution in parthenogenesis. Boca Raton: CRC Press.
Vavre F, Fleury F, Varaldi J, et al. 2000. Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution, 54: 191-200.
Werren J H. 1997. Biology of Wolbachia. Ann Rev Entomol, 42: 587-609. DOI:10.1146/annurev.ento.42.1.587
Werren J H, Wan Z, Lirong G. 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society of London: Series B, 261: 55-63. DOI:10.1098/rspb.1995.0117
Werren J H, Windsor D M. 2000. Wolbachia infection frequencies in insects: evidence of a global equilibrium?. Proceedings of Royal Society of London: Series B, 267: 1277-1286. DOI:10.1098/rspb.2000.1139
West S A, Cook J M, Werren J H, et al. 1998. Wolbachia in two insect host-parasitoid communities. Mo Ecol, 7: 1457-1465. DOI:10.1046/j.1365-294x.1998.00467.x