林业科学  2002, Vol. 38 Issue (5): 147-151   PDF    
0

文章信息

陈辉, 袁锋.
Chen Hui, Yuan Feng.
树木抗性与小蠹虫生存策略的进化
RESISTANCE OF HOST TREES AND EXISTANCE STRATEGY EVOLUTION OF BARK BEETLES
林业科学, 2002, 38(5): 147-151.
Scientia Silvae Sinicae, 2002, 38(5): 147-151.

文章历史

收稿日期:2001-04-27

作者相关文章

陈辉
袁锋

树木抗性与小蠹虫生存策略的进化
陈辉, 袁锋     
西北农林科技大学 杨凌 712100
摘要: 小蠹虫对寄主树木的入侵危害不仅受到树木原生性抗性的直接影响,而且小蠹虫在寄主树木组织内的定居繁衍也受到寄主树木诱导性抗性的制约。寄主树木抗性的强弱决定小蠹虫入侵寄主树木的数量,也促使小蠹虫与特定的真菌共生,真菌通过对寄主树木生理生化代谢的影响,以削弱寄主树木抗虫性,从而为小蠹虫在寄主树木组织内的定居创造必备的生存条件。同时小蠹虫为适应真菌的共生和寄主树木的抗虫性,促使小蠹虫生存繁衍策略高度进化,从而形成小蠹虫—共生真菌—寄主树木三者协同进化共生的关系。
关键词: 小蠹虫    共生真菌    生存策略    抗生    进化    
RESISTANCE OF HOST TREES AND EXISTANCE STRATEGY EVOLUTION OF BARK BEETLES
Chen Hui, Yuan Feng     
Northwest Sci.-Tech. University of Agriculture and Forestry Yangling 712100
Abstract: Primary resistance of host trees directly effects the infection of bark beetles, secondary resistance of host trees restrict the colonization and brood development of bark beetles in the host tree tissues.The resistance of host trees decides invasion number of bark beetles and impels bark beetles to symbioses with special fungi. The symbiotic fungi of bark beetles effect the physiological metabolism of host trees to weaken host trees resistance, so that, creating essential existance condition for bark beetles in the host tree tissues, and inducing existance strategy of bark beetles' high evolution in suitable to the symbiotic fungi and host trees resistance, result in bark beetles' cooperated evolution with host trees and symbiotic fungi.
Key words: Bark beetles    Symbiotic fungi    Existance strategy    Resistance    Evolution    

尽管小蠹虫具有高效的聚集信息素,能够确保小蠹虫以适当的种群密度入侵寄主树木,小蠹虫的隐蔽性“家族”生存繁殖方式,能够使小蠹虫有效地利用寄主树木营养和空间生态位,维持其相对稳定的种群密度(Paine et al.,1997陈辉等,1999)。但小蠹虫对树木的选择入侵和定居繁衍仍然遭受到树木结构和生理生化抗虫性的强烈影响,这就要求小蠹虫必须具有克服寄主树木抗性的能力或依赖其它生物以有效地抵御寄主树木的抗性。众多研究已经证实:小蠹虫与共生真菌的协同作用,不仅使不蠹虫和其共生真菌能够有效地入侵和利用寄主树木各种营养物质,而且能够有效地克服寄主树木组织结构和生理生化抗性。同时,寄主树木的抗性不仅促使小蠹虫和共生真菌在形态、生态和生理代谢方面发生相应的适应性变化,而且在小蠹虫与真菌共生繁殖策略上也发生高度适应性进化。

1 树木对小蠹虫的抗性类型

寄主树木对小蠹虫和共生真菌的抗性包括原生性抗性和诱发性抗性两类。原生性抗性是寄主树木自身已具备的组织结构和生理生化代谢抗性,而诱发性抗性则为寄主树木在遭受小蠹虫和共生真菌入侵危害后所诱导的生理生化抗性,诱发性抗性反应是寄主树木原生性抗性反应的延续(Paine et al.,1997)。松属植物充分发育的树脂分泌系统,是任何一种小蠹虫入侵首先遭受的原生性抗性。而且,随小蠹虫和共生真菌在树木组织内的发育,必然诱导树木产生使入侵者隔离和中毒的细胞和生物化学变化,所以寄主树木对小蠹虫和共生真菌的抗性是原生性抗性和诱发性抗性的综合表现(唐明等,1999陈辉等,19992000Cates et al.,1982Nebeker et al.,1993Raffa et al.,1983)。

Berryman (1972)证实了针叶树木对小蠹虫和共生真菌的原生性和诱发性抗性物质组分。Matson和Hain (1985)指出,寄主树木原生性和诱发性抗性物质的含量依赖于寄主树木分布的地理区域和入侵寄主树木的小蠹虫年发生代数。寄主树木抵御小蠹虫和共生真菌定居的抗性是寄主树木活力、林分结构、生态条件和小蠹虫种群密度,以及小蠹虫接种共生真菌种类和数量的综合反映(Raffa et al.,1983Paine,1984Safranyik et al. 1975Stephen et al.,1983)。小蠹虫的定居数量和入侵真菌对寄主树木的危害,证实了寄主树木的抗性具有阈值(每单位树木干部表皮小蠹虫的入侵量),且与寄主树木的生理生化代谢状况相关。小蠹虫的定居行为直接与寄主树木的抗性相关,当危害寄主树木的小蠹虫种群密度较低,且寄主树木的防御能力尚未丧失或耗尽时,则小蠹虫将继续分泌聚集信息素;但当小蠹虫的聚集最终使寄主树木的抗性丧失时,小蠹虫停止分泌聚集信息素(Raffa et al.,19831993Berryman,1982Birgersson et al.,19881989Renwick et al.,1970)。

2 寄主树木的原生性抗性 2.1 树木组织结构对小蠹虫和共生真菌的抗性

针叶树木发育良好或成熟的树脂分泌系统是入侵寄主树木有机体首先遭受到的抗性结构。由单萜、倍半萜和树脂酸组成的流动树脂具有清洗生物有机体伤口的功能;减轻小蠹虫入侵寄主树木和在寄主树木上产卵的体会(Berryman,1972Nebeker et al.,1995)。松属(Pinus)植物初生树脂道仅存在于初生木质部中,形成过程与皮层树脂道相似;次生树脂道分布于次生维管组织中,分为水平树脂道和垂直树脂道两类,水平树脂道存在于次生木质部和次生韧皮部,而垂直树脂道仅存在于次生木质部中,在次生木质部中水平树脂道和垂直树脂道腔道贯通,形成二维网状结构。这种二维树脂道结构使松属植物在遭受小蠹虫和真菌的危害时能够在任何一个入侵点有效地分泌树脂,以抵御小蠹虫和真菌对寄主树木的危害。

2.2 树木生理生化代谢对小蠹虫和共生真菌的抗性

挪威云杉(Picea abies)中的单萜树脂毒素对云杉大小蠹(Dendroctonus micans)的抗性作用不显著(Lieutier et al.,1992)。但是,树木韧皮部外层木质化石细胞,则可做为一种重要的交替性原生因素抵御小蠹虫的危害(Wainhouse et al.,1990)。单萜和二萜树脂酸具有抗细菌和抗真菌的作用(Paine et al.,1994Bridgess,1987Himejima et al.,1992)。这些树脂的组分可能有不同的影响,但非极性的树脂成分可能主要通过保护真菌孢外酶对树脂底物的作用,以达到对真菌生长的抑制。同时,一些树脂组分可能实际上刺激真菌的生长(Paine et al.,1994)。尽管小蠹虫总是对其专性寄主树木树脂有较大的忍耐力,可以克服寄主树木树脂对其抑制,但原生性树脂组分仍然可能对小蠹虫的定居有毒害或拒避作用(Raafa et al.,1985Reid et al.,1970Smith,19631966)。

树脂系统的物理特性已被证实是寄主树木对小蠹虫和真菌抗性的重要成分,寄主树木低的树脂压与其遭受小蠹虫的危害相关,寄主树木树脂在树脂道中的储存,而产生的高树脂流速成为抗性的一种主要特征(Cates et al.,1982Hodges et al.,1979Klepzig et al.,1995Nebeker et al.,1992Lorio et al.,1995)。

3 寄主树木的诱导性抗性

寄主针叶树木的诱发性抗性是随寄主树木遭受小蠹虫和共生真菌入侵诱发而产生的(Berryman,1972)。诱导抗性涉及到寄主树木在受侵染部位细胞和生物化学的变化,其中包括寄主组织细胞坏死、不透性细胞层的产生、酚类物质和单萜物质的合成,以及限制真菌在特定区域的生长发育等诸多方面(Nebeker et al.,1992Mullick,1977)。寄主针叶树木产生的诱导性抗性可以成功地抑制小蠹虫和其共生真菌的入侵和定居,但已被大量小蠹虫入侵和接种的寄主树木,其诱导性树脂可能不足于成功地抑制小蠹虫和真菌的繁殖和生长。

尽管寄主树木的诱导性抗性为非特异性反应,但不同的真菌种类所诱导寄主树木产生的反应不同,寄主树木受致病性病原真菌的损害程度越强,则寄主树木的诱导抗性反应越强(Paine et al.,1997Mullick,1977)。部分寄主树木的诱导性抗性反应强度明显地由寄主树木内真菌的生殖率所决定,且随真菌种类的差异反应模式不同,寄主树木诱导性反应强度依赖于寄主树木内真菌的种类和真菌代谢的强度,其诱导性反应从小蠹虫和真菌入侵寄主树木开始,直到寄主树木内小蠹虫和真菌的生命活动衷弱为止(Paine et al.,1997)。

小蠹虫和真菌引起的寄主树木诱导性反应,首先表现在寄主树木组织化学上的变化,尤其是寄主树木酚类化合物和苯丙基化合物的变化。火炬松(Pinus teada)在受到小蠹虫和真菌的影响时,其树皮内部组织中诱导产生烯丙基苯丙醇茴香醚(Phenylpropanoid 4-allyl-anisole),也使缩合单宁减少(Paine et al.,1997)。同时,在小蠹虫和共生真菌的协同作用下,寄主树木的树脂分泌系统遭到破坏,抗性酚类物质和萜烯类物质含量降低,从而降低了寄主树木对小蠹虫和共生真菌的抗性(唐明等,1999陈辉等,2000Raffa et al.,1982)。

尽管寄主树木原生性抗性系统延长了寄主树木对小蠹虫和共生真菌的抗性反应时间,使寄主树木能够有足够的时间产生诱导性抗性反应,但寄主树木的活力状况直接影响其原生性和诱导性抗性反应的能力,如果寄主树木的活力减弱,即使小蠹虫入侵的数量和真菌的接种量较少,寄主树木也不能抵御小蠹虫和真菌的危害。小蠹虫和真菌适当种群数量在寄主树木上的定居和接种,可能导致寄主树木抗性作用能力的增强,但过高种群数量的小蠹虫和真菌入侵寄主树木,则导致树木抗性迅速衰退(Paine et al.,1997)。

4 小蠹虫和共生真菌对寄主树木抗性的适应性进化

小蠹虫与真菌的共生是小蠹虫克服寄主树木抗性的主要途径,其不仅表现在小蠹虫的形态、生理生化代谢方面,而且表现在小蠹虫和真菌生长发育等方面。众多研究证实小蠹虫和共生真菌对寄主树木抗性的适应性主要包括:①小蠹虫为携带和传播共生真菌在形态结构上进化形成特殊的贮菌器结构,以有效地传播真菌和将真菌接种于寄主树木组织内;②小蠹虫和共生真菌通过生存场所的差异和分离,达到对寄主树木不同部位抗性能力的有效克服,真菌通过在寄主树木木质部内的发育,破坏寄主树木树脂分泌系统,使树脂抗性丧失;而小蠹虫则通过在寄主树木韧皮部内的繁殖,使寄主树木活性细胞代谢受到严重抑制,失去抗性再生能力;③小蠹虫和共生真菌通过生理生化代谢的相互依赖性和协调性,达到对寄主树木抗性的有效克服。小蠹虫的大量入侵使寄主树木树脂合成和代谢受到严重影响和紊乱,而真菌则通过诱导寄主树木的诱导性抗性反应,以消解寄主树木树脂、酚类物质等生理生化抗性物质。

5 小蠹虫生存繁衍策略的进化

小蠹虫与真菌共生关系的建立是小蠹虫和真菌间相互适应、制约和协同进化的结果,其不仅表现在小蠹虫和真菌形态学、生理学、生态学、行为学等方面,而且在小蠹虫的生存繁衍策略上得到充分地表现。

初期性小蠹(Primary)包括瘤额大小蠹(Dendroctonus frontalis)、Dendroctonus vitei、墨西哥大小蠹(D.mexicanus)、圆头松大小蠹(D.adjunctus)、西松大小蠹(D.brevicomis)、黑山大小蠹(D.ponderosae)、光背大小蠹(D.jeffreyi)和云杉八齿小蠹(Ips typographus)等接近专性危害健康树木的小蠹虫。这类小蠹虫由于在寄主树木中的大量入侵定居,导致寄主树木死亡(Paine et al.,1997殷惠芬等,1984)。当初期性小蠹在其种群密度较低时,主要危害树势衰弱的寄主树木,而其种群密度较高时,能迅速入侵和杀死健康和生命力旺盛的寄主树木。

次期性小蠹虫(Secondary)包括红翅大小蠹(D.rufipennis)、黄杉大小蠹(D.pseudotsugae)、落叶松大小蠹(D.simplex)、云杉松齿小蠹(Ips pini)、弱瘤小蠹(Scolytus ventralis)和纵坑切梢小蠹(Tomicus pinipera)等危害衰弱木、枯萎木和频死木的兼性寄生性小蠹虫。这类小蠹虫在低种群密度下,主要危害干旱、病害或采伐、火灾等因素致使树木生长衰弱或生理状况低下,从而加速被害寄主树木的死亡进程。而在高种群密度下,适宜的环境条件可以导致其定居和危害健康寄主树木,但其大发生与初期性小蠹相比,所带来的损失较小和持续的时间较短(Paine et al.,1997殷惠芬等,1984)。

腐生性小蠹虫(saprophytic)是那些在死亡的寄主树木上定居取食的小蠹种类(Paffa et al.,1993)。这类小蠹虫主要在死亡的寄主树木上定居,对寄主树木的抗性具有较低的适应性和选择性。殷惠芬(1984),则将在寄主树木木质部内生存繁衍,以自身携带和在寄主树木木质部内培养的真菌为食物的小蠹虫称为食菌小蠹(ambrosia beetles),与之共生的真菌称为虫道真菌(ambrosia fungi) (殷惠芬等,1984)。

Harrington (1993)认为弱致病性真菌常与大量初期性小蠹虫共生,而强致病性真菌却往往与次期性小蠹虫共生,如强致病性真菌(Leptographium terebrantis)与次期性黑脂大小蠹(Dendroctonus terebrans)和红脂大小蠹(Dendroctonus valens)共生;纵坑切梢小蠹与强致病性真菌Leptographium wingfieldii共生;危害性较弱的松十二齿小蠹(Ips sexdentatus)与弱致病性真菌Ophiostoma brunneo-citiatum共生(Lieutier et al.,1989)。Piou等(1989)研究表明,蓝变真菌与纵坑切梢小蠹的共生关系可能是偶然发生的,且蓝变真菌的作用并不是为纵坑切梢小蠹或松十二齿小蠹在寄主树木上的繁殖成功。云杉八齿小蠹(Ips typographus)与三种蓝变真菌共生,但共生表现出对树木抗性的适应性差异。当云杉八齿小蠹处于流行种群密度或危害健康活寄主树木时,长喙壳属强致病性真菌Ceratocystis polonica是与小蠹虫普遍共生的真菌种类;但当云杉八齿小蠹种群密度处于低水平或危害死亡或濒死树木时,则其共生真菌由弱致病性真菌Ophiostoma bicolor所代替(Solheim,1992)。云杉八齿小蠹、北欧八齿小蠹(Ips cembrae)和红翅大小蠹当其危害健康寄主树木时,才与强致病性真菌Ceratocystis coeralescens密切共生。如果小蠹虫与长喙壳属(Ceratocystis)真菌共生,则共生真菌首先入侵寄主树木边材,并迅速使寄主树木边材蓝变,破坏寄主树木树脂分泌系统(Paine et al.,1997Solheim,1995)。

参考文献(References)
陈辉, 唐明, 叶宏谋, 等. 1999. 秦岭华山松小蠹生态位研究. 林业科学, 35(4): 40-44. DOI:10.3321/j.issn:1001-7488.1999.04.007
陈辉, 袁锋. 2000. 华山松大小蠹带菌部位及贮菌器结构研究. 林业科学, 36(1): 53-57. DOI:10.3321/j.issn:1001-7488.2000.01.009
唐明, 陈辉. 1999. 华山松大小蠹共生真菌对寄主树木的影响. 林业科学, 35(6): 63-66. DOI:10.3321/j.issn:1001-7488.1999.06.009
殷惠芬, 黄复生, 李兆麟. 1984. 中国经济昆虫志(小蠹科). 北京: 科学出版社.
Berryman A A. Population dynamics of bark beetles. In: Mitton J B, Sturgeon K B. ed. Bark beetles in North American Conifers. Austin: Univ. Texas, 1982, 264~314
Berryman A A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. Bioscience, 22: 598-602. DOI:10.2307/1296206
Birgersson G, Bergstrom G. 1989. Volatiles released from individual spruce bark beetle entrance holes. Quantitative variation during the first week of attack. J Chem Ecol, 15: 2465-2483. DOI:10.1007/BF01020377
Birgersson G, Schlyter F, Bergstom G, Lofqvist J. 1988. Individual variation in aggregation pheromone content of the bark beetle Ips typographus. J Chem Ecol, 9: 1737-1761.
Bridgess J R. 1987. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology, 77: 83-85. DOI:10.1094/Phyto-77-83
Cates R G, Alexander H. Host resistance and susceptibility. In: Mitton J B, Sturgeon K B ed. Bark Beetles in North American Conifers. Austin: Univ. Texas, 1982, 212~263
Himejima M, Hobson K R, Otsuka T, et al. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine Pinus ponderosa: a defense mechanism against microbial invasion. J Chem Ecol, 18: 1809-1918. DOI:10.1007/BF02751105
Harrington T C. Diseases of conifers caused by species of Ophiostoma and Leptographium. In: Wingfield M J, Seifert K A, Webber J F. ed. Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity. St. Paul. M N: AM. Phytopathol. Soc. 1993, 161~172
Hodges J D, Elam W W, Watson W F, et al. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle attacks. Can Entomol, 111: 889-896. DOI:10.4039/Ent111889-8
Klepzig K D, Kruger E L, Smalley E B, et al. 1995. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with beetle-vectored fungus. J Chem Ecol, 21: 601-626. DOI:10.1007/BF02033704
Lieutier F, Cheniclet C, Garcia J. 1989. Comparison of the defense reactions of Pinus pinaster and Pinus sylvestris to attack by two bark beetles (Coleopter: Scolytidae) and their associated fungi. Environ Entomol, 18: 228-234. DOI:10.1093/ee/18.2.228
Lieutier F, Vouland G, Pettinetti M, et al. 1992. Defense reactions of Norway spruce (Picea abies Karst.) to artificial insertion of Dendroctonus micans Kug. J Appl Entomol, 114: 174-186. DOI:10.1111/j.1439-0418.1992.tb01112.x
Lorio P L Jr, Stephen F M, Paine T D. 1995. Environmemt and ontogeny modify loblolly pine response to induced acute water deficits and bark beetle attack. For Ecol Man, 73: 97-110. DOI:10.1016/0378-1127(94)03500-V
Matson P A, Hain F P. Host conifer defense strategies: a hypothesis. In: Safranyik L. ed. The Role of Forest Insects: Proc. IUFRO Conf. Victoria: Can. For Serv Pac For Res Cent, 1985, 33~42
Mullick D B. 1997. The non-specific nature of defense in bark andwood during wounding, insect, and pathogen attack. Rec. Adv. Phytochem., 11: 359-441.
Nebeker T E, Hodges J D, Blanche C A, et al. 1992. Variation in the constitutive defenses system of loblolly pine in relation to bark beetle attack. For Sci, 38: 457-466.
Nebeker T E, Hodges J D, Blanche C A. Host reaponse to bark beetle and pathogen colonization. In: Schowalter T, Filip G. ed. Beetle-Pathogen Interactions in Conifer Forest. San Diego: Academic, 1993, 157~173
Nebeker T E, Schmitz R F, Tisdale R A. 1995. Comparison of oleoresin flow in relaton to wound size, growth rate, and disease status of lodgepole pine. Can J Bot, 73: 370-375. DOI:10.1139/b95-038
Paine T D, Hanlon C C. 1994. Influence of oleoresin constituents from Pinus ponderosa and Pinus jeffreyi on the growth of the mycangial fungi from Dendroctonus brevicomis. J Chem Ecol, 20: 2551-2563. DOI:10.1007/BF02036191
Paine T D, Raffa K F, Harrington T C. 1997. Interactons among scolytid bark beetles, their associated fungi, and live host conifer. Annu. Rev. Entomol, 42: 179-206. DOI:10.1146/annurev.ento.42.1.179
Paine T D. 1984. Seasonal response of ponderosa pine to inoculation of the mycangial fungi from the westem pine beetle. Can J Bot, 62: 551-555. DOI:10.1139/b84-081
Piou D, Lieutier F. 1989. Symptomatological observations and possible roles of Ophiostoma minus and Tomicus piniperda in the decline of Scots pine in the forest of Orleans. Ann Sci For, 46(1): 39-53. DOI:10.1051/forest:19890104
Raffa K F, Berryman A A, Simasko J, et al. 1985. Effects of grand fir monoterpenes on the fir engraver Scolytus ventralis and its symbiotic fungus. Environ Entomol, 14: 552-556. DOI:10.1093/ee/14.5.552
Raffa K F, BerrymanA A. 1982. Physiological differences between lodgepole pines resistant and susceptible to the moutain pine beetle and associated microorganisms. Environ Entomol, 11: 486-492. DOI:10.1093/ee/11.2.486
Raffa K F, Berryman A A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecol Monogr, 53: 27-49. DOI:10.2307/1942586
Raffa K F, Phi llips TW, Salom S M. Strategies and mechanisms of host colonization by bark beetles. In: Schowalter T, Filip G. ed. Beetle-Pathogen Interactions in Confier Forests. San Diego: Academic, 1993, 102~128
Reid R W, Gates H. 1970. Effect of temperture and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). Can Entomol, 102: 617-622. DOI:10.4039/Ent102617-5
Renwick J A A, Vite J P. 1970. Systems of chemical communication in Dendroctonus. Conrtib. Boyce Thompson Inst, 24: 283-292.
Safranyik L, Shrimpton D M, Whitney H S. An interpretation of the interactions between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. In: Baumgartner D. ed. Management of Lodgepole Pine Ecosystems. Pullman: Wash. State Univ Coop Ext, 1975, 406~428
Smith R H. Resin quality as a factor in the resis tance of pines to bark beetles. In: Gerhold H D, McDermott R E, Schreiner E H et al. ed. Breeding Pest-Resistant Tress. Oxford: Pergamon, 1966, 189~196
Smith R H. 1963. Toxicity of pine resin vapors to three species of Dendroctonus bark beetles. J Econ Entomol, 56: 827-831. DOI:10.1093/jee/56.6.827
Solheim H. 1995. Early stages of blue-stain fungus invasion of lodgepole pine sapwood following mountain pine beetle attack. Can J Bot, 73: 70-74. DOI:10.1139/b95-009
Solheim H. 1992. Fungi succession in sapwood of Norway spruce infested by the bark beetle Ips typographus. Eur J For Pathol, 2: 136-148.
Stephen F M, Paine T D, Lih M P. 1983. Understanding bark beetle host interactions: a means for improving decision strategies. Z Ang Entomol, 96: 256-265.
Wainhouse D, Cross D J, Howell R S. 1990. The role of lignin as a defence against the spruce beetle Dendroctonus micans: effect on larvae and adults. Oecologia, 85: 257-265. DOI:10.1007/BF00319411