文章信息
- 鄂文峰, 王传宽, 杨传平, 王兴昌, 张全智, 张彦群.
- E Wenfeng, Wang Chuankuan, Yang Chuanping, Wang Xingchang, Zhang Quanzhi, Zhang Yanqun
- 兴安落叶松边材心材生长特征的种源效应
- Effects of Provenances on Growth Characteristics of Sapwood and Heartwood of Larix gmelinii Trees
- 林业科学, 2009, 45(6): 109-115.
- Scientia Silvae Sinicae, 2009, 45(6): 109-115.
-
文章历史
- 收稿日期:2007-11-15
-
作者相关文章
树木干材一般包括边材和心材2部分。边材具有输导液流和支持树冠(导管和管胞)及贮藏养分和能量(薄壁细胞)的作用;而心材是由死细胞组成的色泽较深的中央锥体,其中沉积了大量树脂、胶质、鞣质、油类和色素等物质,主要起支持作用(王兴昌等,2008)。因此边材和心材具有不同的生理和物理特性(Hillis, 1987; Meinzer et al., 2005)。边材断面积表征水分输导面积,与叶面积(或叶量)紧密正相关(Shinozaki et al., 1964)。边材面积与叶面积之比常用于表征树木的蒸腾耗水或固碳能力(Makela et al., 2001)。心材和边材物理和化学性质也会影响木材利用。板材和实木利用倾向于选择坚硬耐腐的心材,而纸浆材倾向于利用色泽较浅的边材(Taylor et al., 2002)。因此研究其生长特征及其影响因子不仅有利于深入认识树木生长、水分利用、树干呼吸(Morling et al., 1999)等生理过程,还有利于提高木材利用率(Pinto et al., 2004)。
兴安落叶松(Larix gmelinii)是我国东北地区主要的造林树种之一,其天然分布区纵跨7个纬度。以往研究发现,长期生长在不同地理气候条件下的兴安落叶松,其生长性状产生了显著的差异(杨传平等, 2002),但对其边材/心材的形成及异速生长关系的变化尚不清楚。
边材和心材形成和异速生长关系受立地条件(Climent et al., 2002; Bektas et al., 2003)、遗传特性(Ericsson et al., 1999; Fries, 1999; Woeste, 2002)、树木生长(Pinto et al., 2004; Knapic et al., 2005;Miranda et al., 2006)等因素的影响。绝大多数有关生长环境对边材/心材形成影响的研究都是在不同立地和环境条件下选取样木进行比较的(Climent et al., 2002; Bektas et al., 2003;Cordero et al., 2003),因而难以区分所观测到的边材/心材发育特征差异是对环境短期响应而产生的表现型差异还是对环境长期适应而导致的基因型分异。为此,本试验以生长在完全一致环境条件下的26年生7个兴安落叶松种源为对象,通过钻取树木生长芯研究边材/心材生长和异速生长(allometry)关系,探讨种源地环境条件对边材/心材生长特征的影响及其形成原因,为全球气候变化条件下树木生长和水分关系机制、构建树木生长收获模型和有效利用木材提供科学依据。
1 材料与方法 1.1 试验地概况试验所用种子采集于兴安落叶松自然分布区内代表不同地理和气候特点的7个种源地(表 1)。种源试验地位于东北林业大学帽儿山森林生态系统研究站(127°30′—127°34′ E, 45°20′—45°25′ N)。1980年秋采种,1981年育苗,1983年春造林,完全随机区组设计,重复5次,80株小区设计,双行排列,株行距1.5 m×2.0 m,四周设有保护行。1997年伐去保护行(每双行),2001年每隔1株伐去2株填充株,现株行距为4.5 m×4.0 m(杨传平等, 2002)。造林地土壤、地形、气候条件一致,平均海拔300 m,平均坡度10° ~15°,母质层为花岗岩,土壤暗棕壤。该地区为大陆性季风气候,春季多风,夏季温暖湿润,冬季干燥寒冷。年平均降雨量600~800 mm, 80%集中在7,8月份, 年均蒸发量884 mm。年平均温度2.8 ℃;1月和7月均温分别为-31和32 ℃;5 ℃以上年积温2 897 ℃。无霜期120~140天(5—9月)。年平均日照时数1 850 h。
2006年生长季结束后(10月),在种源试验林每个区组内对每个种源各区组分别随机选取生长良好的样木共40~50株,涵盖了试验区的所有立地条件。测量每株样木胸径(DBH),并分别在胸高处树干的东向和南向钻取一个生长芯,共钻取生长芯606个。生长芯带回室内打磨处理后,用高精度专业扫描仪进行图像扫描,根据心材与边材颜色差异区分边材/心材的界限,然后用Windendro2003年轮分析软件(Regent Instruments Co., Canada)测量每个生长芯的树皮厚度、边材宽度(sapwood width, SW)和边材年轮数(sapwood ring number, SRN)。
1.3 数据分析将东向和南向的SW和SRN测定值平均,得到每株样木的SW和SRN值。用去皮半径减去SW得出心材半径(heartwood radius, HR);把树干横断面看作一个标准圆形来计算边材面积(sapwood area, SA)和心材面积(heartwood area, HA);SW/SRN即为平均边材生长速率(mean sapwood growth rate, MSGR);HA/SA即为心边材比(ratio of heartwood area to sapwood area, HSR)。
所有数据均用SAS 8.2统计软件分析。用混合模型(PROC MIXED)检验各个边材/心材特征变量(DBH, SW, HR, SA, HA和MSGR)的种源效应。
异速生长关系,将易于测定的变量(如胸径和树高)与其他不易测定的结构和功能特征联系在一起(Niklas, 1994),在森林生态和经营管理中得到了广泛的应用(Wang, 2006)。用GLM模型检验种源对各变量之间异速生长关系的影响。本研究采用DBH,HA或MSGR单一变量预测其他变量。若种源效应不显著,则建立7个种源数据综合的异速生长模型;否则对每个种源分别建立其异速生长模型。
2 结果与分析 2.1 种源内和种源间边材/心材特征的差异种源显著地影响(P<0.05)兴安落叶松DBH,SW,HR,SA,HA和MSGR,但对HSR影响不显著(P = 0.446)。最南种源地鹤北这些参数的平均值在7个种源中均为最大,而三站的平均值均为最小(表 2),前者分别比后者高18%,26%,20%,42%,54%和25%。此外,种源内各心材/边材发育特征参数的变异也较大(表 2)。7个种源各参数变异系数的范围分别为DBH:19.95~27.73,SW:23.49~28.89,HR:25.83~35.85,HA:50.82~75.54,SA:39.70~49.25,HSR:40.34~49.30和MSGR:23.67~34.17。其中DBH变异最小,HA变异最大。最北种源地塔河的大部分参数的变异程度都高于其他种源。
种源地的年均温(mean annual temperature, MAT, ℃)和年降水量(mean annual precipitation, MAP, mm)都显著地(P<0.05)影响落叶松的SA和MSGR,但对HA的影响不显著(两者的P值分别为0.220和0.383)。除三站种源外,SA和MSGR均与种源地的MAT和MAP呈显著的正相关(图 1)。三站种源SA(97.62 cm2)和MSGR(0.34 cm·a-1)在7个种源中最低,分别是最高值(鹤北149.9 cm2和乌伊岭0.45 cm·a-1)的65%和75%。
协方差分析表明,种源对边材/心材参数(SW,SA,HR,HA和HSR)与DBH之间的异速生长关系以及SA与HA之间的关系均无显著影响(P>0.05)。因此,将7个种源的数据汇总分析发现,SW,HR,HSR和MSGR分别与DBH呈极显著的线性关系,SA与HA也呈线性关系,而SA和HA与DBH则呈极显著的幂函数关系(图 2)。
然而,种源显著地影响MSGR与DBH之间(回归方程截距和斜率差异检验结果分别为F6, 287=4.96, P<0.001和F6, 287=6.12, P<0.001)、SA与MSGR之间(检验结果分别为F6, 287=3.91, P<0.001和F6, 287= 5.20, P<0.001)以及HA与MSGR之间(检验结果分别为F6, 287=3.18, P=0.005和F6, 287=3.19, P =0.005)的关系。因此,针对每个种源的回归分析发现,MSGR与DBH,SA与MSGR,HA与MSGR之间均存在极显著的正相关关系,其R2值波动范围分别为0.880~0.974,0.796~0.951,0.698~0.862(表 3)。
人们早就发现同一物种由于长期适应不同的环境条件会产生种内遗传变异,形成生态型(Tureson, 1922)。但由于树木的边材/心材生长特征受遗传(Hillis, 1987; Ericsson et al., 1999)、年龄(Sellin, 1994; Climent et al., 2002; Gjerdrum, 2003)、林分特征(Longuetaud et al., 2006)、立地条件(Climent et al., 1993; Cordero et al., 2003)、经营措施(Morling et al., 1999)等因子的影响,因此野外条件下难以区分其主导因子。本研究将来自7个种源的兴安落叶松种植在同一环境条件下,并采取一致的经营方式,比对26年生树木的边材/心材生长特征。研究结果排除了众多的影响因子,突出了兴安落叶松树木长期适应不同环境条件而形成的种内变异。结果显示,尽管种源内部变异较大,但绝大多数边材/心材参数的种源间差异显著(表 2)。这与以往对黑胡桃(Juglans nigra)(Woeste, 2002)、欧洲赤松(Pinus sylvestris)(Ericsson et al., 1999)等树种的研究结果相符。
本研究发现,种源对边材/心材变量与DBH之间的异速生长关系、SA与HA之间的关系(图 2)均无显著影响。但是,种源显著地影响DBH,SA和SA与MSGR之间的关系(表 3)。这表明不同种源边材/心材生长特征差异主要是由其生长速率差异引发的,与其生长格局(本文指心边材量及其比例的参数与DBH的异速生长关系)无关。挪威云杉(Picea abies)(Sellin, 1996; Longuetaud et al., 2006)和海岸松(Pinus pinaster)(Knapic et al., 2005)的研究也得出了心边材量与生长速率显著相关。然而,Bektas等(2003)研究认为海拔、土壤有机质含量、土壤酸碱度、土壤类型等会影响心边材比率。究其原因可能与选择的主导因子(诸如年龄、海拔和土壤等)、研究材料及其对环境适应的时间长短等因素有关。
3.2 兴安落叶松边材/心材生长与气候因子的关系许多研究报道,树木径向生长发育与气候(主要是温度和降水)变化有显著的相关性,通过年轮宽度变化可以推测气候的变化(Briffa et al., 1998; Yu et al., 2005; Schongart et al., 2006; Andreu et al., 2007; Giradin, 2007)。除三站种源之外,不同种源兴安落叶松的SA和MSGR均与种源地的年均温和降水量呈显著正相关(图 1),但心边材比率和各生长特征参数之间的异速生长关系并不受种源的影响(图 2)。这说明不同种源气候差异主要通过影响兴安落叶松的生长量和生长速率得以体现。换言之,树木长期适应当地气候变化之后,会改变自身的液流疏导面积(即边材面积)和生长速率,从而调节树木的碳固持能力,但并不改变边材/心材的平衡和碳分配格局。
种源地气候与心边材的关系中,三站种源是一个例外,各个发育特征参数均为最低。三站尽管年均温居中,但年降水量(1 100 mm)约为其他种源地年平均降水量的2倍。本文推测,种源地降水量对兴安落叶松边材/心材生长特征(SA和MSGR)的影响可能存在一个阈值,即当降水量超过该阈值时,降水量对SA和MSGR可能存在抑制作用,这点具有重要的生理学意义。当年降水量很高时,树木生长的限制因子已经不是水分,树木似乎没有必要维持大量边材来保证蒸腾作用,因而抑制了边材的生长。Mencuccini等(2001)发现欧洲赤松叶面积/边材面积比蒸汽压亏缺和夏季最高气温显著负相关。由于本研究没有测定叶面积,这种推测还有待进一步研究和证明。
王兴昌, 王传宽, 张全智, 等. 2008. 东北主要树种心材与边材的生长特征. 林业科学, 44(5): 102-108. DOI:10.3321/j.issn:1001-7488.2008.05.020 |
杨传平, 姜静, 唐盛松. 2002. 帽儿山地区21年生兴安落叶松种源试验. 东北林业大学学报, 30(6): 1-5. DOI:10.3969/j.issn.1000-5382.2002.06.001 |
Andreu L, Gutierrez E, Macisa M, et al. 2007. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 13(4): 804-815. |
Bektas I, Alma M H, Yuksel A, et al. 2003. Influence of site on sapwood and heartwood ratios of Turkish Calabrian pine. Forest Products Journal, 53(4): 48-50. |
Briffa K R, Schweingruber F H, Jones P D, et al. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391(6668): 678-682. DOI:10.1038/35596 |
Climent J, Chambel M R, Perez E, et al. 2002. Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Canadian Journal of Forest Research, 32(1): 103-111. DOI:10.1139/x01-178 |
Climent J, Gil L, Pardos J A. 1993. Heartwood and sapwood development and its relationship to growth and environment in pinus canariensis chr sm ex dc. Forest Ecology and Management, 59(1-2): 165-174. DOI:10.1016/0378-1127(93)90077-Z |
Cordero L D P, Kanninen M. 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fennica, 37(1): 45-54. |
Ericsson T, Fries A. 1999. High heritability for heartwood in north Swedish Scots pine. Theoretical and Applied Genetics, 98(5): 732-735. DOI:10.1007/s001220051128 |
Fries A. 1999. Heartwood and sapwood variation in mature provenance trials of Pinus sylvestris. Silvae Genetica, 48(1): 7-14. |
Giradin M P. 2007. Internnual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemispere land temperatures. Global Ecology and Biogeography, 16(5): 557-566. DOI:10.1111/geb.2007.16.issue-5 |
Gjerdrum P. 2003. Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia. Forestry, 76(4): 413-424. DOI:10.1093/forestry/76.4.413 |
Hillis W E. 1987. Heartwood and Tree Exudates. Berlin: Springer.
|
Knapic S, Pereira H. 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 210(1-3): 81-89. DOI:10.1016/j.foreco.2005.02.017 |
Longuetaud F, Mothe F, Leban J M, et al. 2006. Picea abies sapwood width: Variations within and between trees. Scandinavian Journal of Forest Research, 21(1): 41-53. DOI:10.1080/02827580500518632 |
Makela A, Vanninen P. 2001. Vertical structure of scots pine crowns in different age and size classes. Trees, 15(7): 385-392. DOI:10.1007/s004680100118 |
Meinzer F C, Bond B J, Warren J M, et al. 2005. Does water transport scale universally with tree size?. Functional Ecology, 19(4): 558-565. DOI:10.1111/fec.2005.19.issue-4 |
Mencuccini M, Bonosi L. 2001. Leaf/sapwood area ratios in Scots pine show acclimation across Europe. Canadian Journal of Forest Research, 31(3): 442-456. DOI:10.1139/x00-173 |
Miranda I, Gominho J, Lourenco A, et al. 2006. The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research, 36(10): 2675-2683. DOI:10.1139/x06-130 |
Morling T, Valinger E. 1999. Effects of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine. Scandinavian Journal of Forest Research, 14(5): 462-469. DOI:10.1080/02827589950154168 |
Niklas K J. 1994. Plant Allometry:The Scaling of Form and Process. Chicago, Illinois: University of Chicago Press.
|
Pinto I, Pereira H, Usenius A. 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees-Structure and Function, 18(3): 284-294. DOI:10.1007/s00468-003-0305-8 |
Sellin A. 1994. Sapwood heartwood proportion related to tree diameter, age, and growth-rate in Picea abies. Canadian Journal of Forest Research, 24(5): 1022-1028. DOI:10.1139/x94-133 |
Sellin A. 1996. Sapwood amount in Picea abies (L) Karst determined by tree age and radial growth rate. Holzforschung, 50(4): 291-296. DOI:10.1515/hfsg.1996.50.4.291 |
Schongart J, Orthmann B, Hennenberg K J, et al. 2006. Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Global Change Biology, 12(7): 1139-1150. DOI:10.1111/gcb.2006.12.issue-7 |
Shinozaki K, Yoda K, Hozumi K, et al. 1964. A quantitative analysis of plant form-the pipe model theory. Ⅰ. Basic analyses. Japanese Journal of Ecology, 14(3): 95-105. |
Taylor A M, Gartner B L, Morrell J J. 2002. Heartwood formation and natural durability——a review. Wood and Fiber Science, 34(4): 587-611. |
Tureson A. 1922. The genotypical response of the plant species to the habitat. Hereditas, 3: 100-113. |
Wang C K. 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222(1-3): 9-16. DOI:10.1016/j.foreco.2005.10.074 |
Woeste K E. 2002. Heartwood production in a 35-year-old black walnut progeny test. Canadian Journal of Forest Research, 32(1): 177-181. DOI:10.1139/x01-177 |
Yu D P, Gu H Y, Wang J D, et al. 2005. Relationships of climate change and tree ring of Betula germanii tree line forest in Changbai Mountain. Journal of Forestry Research, 16(3): 187-192. DOI:10.1007/BF02856812 |