林业科学  2008, Vol. 44 Issue (2): 134-142   PDF    
0

文章信息

吕全, 张星耀, 杨忠岐, Henri Maraite, 尹德善, 任晓宏.
Lü Quan, Zhang Xingyao, Yang Zhongqi, Henri Maraite, Yin Deshan, Ren Xiaohong.
红脂大小蠹伴生菌研究进展
Progress in Study on the Fungi Associated with Dendroctonus valens
林业科学, 2008, 44(2): 134-142.
Scientia Silvae Sinicae, 2008, 44(2): 134-142.

文章历史

收稿日期:2006-12-14

作者相关文章

吕全
张星耀
杨忠岐
HenriMaraite
尹德善
任晓宏

红脂大小蠹伴生菌研究进展
吕全1, 张星耀1, 杨忠岐1, Henri Maraite2, 尹德善3, 任晓宏4     
1. 中国林业科学研究院森林生态环境与保护研究所 国家林业局森林生态学与森林保护学重点实验室 北京 100091;
2. Unité de Phytopathologie, Université Catholique de Louvain 1348 Louvain-la-Neuve, Belgium;
3. 山西省临汾市林业局森林病虫害防治检疫站 临汾 041000;
4. 山西省临汾市安泽县林业局 安泽 042500
摘要: 红脂大小蠹是我国重要的外来入侵害虫,给我国林业生产和国土生态安全带来巨大危害。包括红脂大小蠹在内的小蠹科昆虫与真菌之间存在着广泛的共生关系,伴生菌在协助昆虫建立种群、协同克服寄主抗性等方面起到重要作用。对北美原发地红脂大小蠹伴生菌的研究进行综述,以期探讨引起灾害发生的多重因素,并为灾害的控制提供思路。红脂大小蠹记载与10种长喙壳类真菌伴生,其中黑脂小蠹细帚霉、长梗细帚霉、温菲尔德细帚霉和瓦格纳长喙壳等与红脂大小蠹有着较为紧密的共生关系。对这些主要伴生菌的形态特征、系统发育关系、生活习性和致病性进行详细比较。应当警惕这些重要森林病原物对我国森林生态系统的入侵和危害。并对今后包括红脂大小蠹伴生菌在内的我国小蠹虫伴生菌的研究进行讨论。
关键词:红脂大小蠹    伴生菌    长喙壳类真菌    Leptographium    
Progress in Study on the Fungi Associated with Dendroctonus valens
Lü Quan1, Zhang Xingyao1, Yang Zhongqi1, Henri Maraite2, Yin Deshan3, Ren Xiaohong4     
1. Research Institute of Forest Ecology, Environment and Protection, CAF Key Lab of Forest Ecology and Protection of SFA Beijing 100091;
2. Unité de Phytopathologie, Université Catholique de Louvain 1348 Louvain-la-Neuve, Belgium;
3. Forest Pest Control Station of Forestry Bureau in Linfen City, Shanxi Province Linfen 041000;
4. Forestry Bureau in Anze County, Shanxi Province Anze 042500
Abstract: Red turpentine beetle (Dendroctonus valens, RTB), which was probably introduced from USA, is one of the most important invasive pests in Chinese forest ecological system. The beetle traits had changed a lot since it was introduced to China, and the changed traits were linked to the abnormal mortality of Pinus tabulaeformis caused by the beetle in the northern China. Ophiostomatoid fungi were well-known to have widespread symbiotic relationship with the beetles, such as Coleoptera: Scolytidae. The symbiotic fungi were of benefit for the insects to establish their population, and the symbiosis integrated to destruct the defense devices of the host (Pinus tabulaeformis). The paper mainly reviewed the study on the fungi associated with RTB in North American. There are around 10 species of ophiostomatoid fungi recorded associated with RTB in their original regions. Among them, Leptographium terebrantis, L. procerum, L. wingfieldii and Grosmannia wageneri are common and have relatively close associates of RTB. Their morphological features, phylogenetic relationships, life habits and pathogenicity were compared in details. Particular attention should be paid to these important forest pathogens invading to China and causing damage to Chinese forest ecosystem. The research perspective of fungi associated with bark beetle in China was also discussed.
Key words: Dendroctonus valens    associated fungi    ophiostomatoid fungi    Leptographium    

动植物物种传播到一个新的生态系统内被认为是全球范围内决定生物多样性变化的5个要素之一(Sala et al., 2000)。人类的各种活动包括国际贸易和旅行带来的病虫害入侵,破坏了森林生态系统平衡并造成严重的社会经济损失(Liebhold et al., 1995)。在我国,外来入侵物种给生态环境、生物多样性和社会经济造成巨大危害,森林入侵生物每年严重发生与危害的面积约150万hm2,造成的经济、社会和生态损失达560亿元人民币(张星耀等,2004)。红脂大小蠹(Dendroctonus valens)(鞘翅目Coleoptera:小蠹科Scolytidae)即是入侵我国的重要森林害虫之一(殷惠芬,2000Sun et al., 2003)。

红脂大小蠹分布于北美洲,作为一种次期性害虫,几乎为害其分布范围内的各种松属(Pinus spp.)树种及云杉(Picea)、黄杉(Pseudotsuga)、冷杉(Abies)和落叶松(Larix)等。该虫被认为是20世纪80年代初随着未经处理的松材进口传入到我国的(李计顺等,2001)。对线粒体细胞色素氧化酶亚基Ⅰ基因(mtDNA COI)序列的测定分析,验证了我国红脂大小蠹的原产地为美国太平洋西北地区,而且其传入是20年来新近发生的事件(Cognato et al., 2005)。原产地该虫仅偶尔造成松人工林死亡(Rappaport et al., 2001),通常并不形成主要危害。然而1998年以来在我国的突然暴发,造成了巨大的社会经济损失。仅至1999年底,该虫在山西、河南和陕西3省的油松(Pinus tabulaeformis)林内发生面积达52.6万hm2,其中严重危害13万hm2,个别地区油松死亡率高达30%,已导致600多万株的松树枯死(李计顺等,2001)。红脂大小蠹已向东扩散至河北省沿太行山山脉部分林区(高宝嘉等,2003)。

自入侵我国并大面积扩散流行以来,红脂大小蠹的生物学特性与在原产地相比产生了明显变化(Yan et al., 2005),这些变化与其带来的显著危害直接相关。在北美,受物理损伤和其他初期性害虫、病原菌、火灾等多种胁迫的寄主易受该虫侵袭,危害主要集中在树干下部和根冠处,诱捕害虫种群最有效的寄主挥发物为(-)-β-蒎烯(加利福尼亚州内华达山脉地区);在中国,危害主要发生在胸径超过10 cm的20年生以上的健康乡土树种油松,危害部位集中在树干下部和根部,根部同时也是害虫越冬场所,引诱红脂大小蠹的最有效成分为(+)-3-蒈烯而不是(-)-β-蒎烯。

此外,在北美,红脂大小蠹与长喙壳类真菌(ophiostomatoid fungi)普遍伴生,伴生菌影响小蠹虫种群行为并且对寄主树种表现出明显致病性(Owen et al., 1987; Paine et al., 1997)。而我国红脂大小蠹的伴生菌以前并没有人研究。

小蠹虫和真菌之间的伴生是生物长期协同进化的结果,是森林生态系统内一种普遍的生态学现象。自从Hartig(1878)首次认识到真菌和昆虫危害、木质部变色这些现象之间存在联系以来,昆虫伴生菌的研究一直是植物保护和生态学研究的热点内容之一。小蠹虫和真菌伴生关系的研究主要集中在:伴生真菌的分类学、生物学和生态学研究,媒介昆虫对真菌的传播方式,“媒介昆虫-伴生真菌”的组合方式,“昆虫-真菌”的共生关系等几个方面(Kirisits, 2004; Klepzig et al., 2004; Paine et al., 1997; Wingfield et al., 1993)。本文结合迄今国外研究进展,对红脂大小蠹伴生菌作一综述。

1 红脂大小蠹伴生菌种类

小蠹虫伴生真菌按照其特征划分为不同的类别。根据传播方式分为贮菌器(mycangia)传播伴生菌和非贮菌器(体表或体内携带)传播伴生菌;根据营养方式划分出一类称作为虫道真菌(ambrosia fungi)的伴生菌。这类真菌专指在木质部内繁育的材小蠹(ambrosia beetles)的伴生真菌,生长在木质部小蠹虫坑道内,是幼虫唯一的营养来源;其余的与取食韧皮部小蠹虫相伴生的真菌很可能并不完全地为其伴生小蠹虫提供营养;另外,从系统分类学角度小蠹虫伴生菌包括酵母菌、担子菌、子囊菌和无性型真菌(anamorphic fungi)。

在众多的伴生菌种类里,长喙壳类真菌是小蠹虫的主要伴生菌。该类真菌是一系列形态相似的真菌的总称,包括微囊目(Microascales)的长喙壳属(Ceratocystis),穴喙壳属(Sphaeronaemella),GondwanamycesCornuvesica,以及蛇口壳目(Ophiostomatales)的蛇口壳属(Ophiostoma),Grosmannia和拟长喙壳属(Ceratocystiopsis),同时包括对应于这些有性型的多种无性属。这类真菌的显著特点是具有长喙状的子囊壳、延长柄的分生孢子梗,以及各自顶端的黏性子囊孢子和分生孢子团等的特殊形态构造。这类构造十分利于被昆虫的携带和传播。这类真菌也因常常引起树木边材蓝变、灰变、棕变或黑变等症状而被称作蓝变菌(blue-stain fungi)。

大小蠹属小蠹虫依靠特定结构贮菌器携带真菌的种类包括:墨西哥松大小蠹(Dendroctonus approximatus)、额瘤大小蠹(D. frontalis)、西松大小蠹(D. brevicomis)、中欧山松大小蠹(D. ponderosae)、光背大小蠹(D. jeffreyi)和圆头松大小蠹(D. adjunctus)。而包括红脂大小蠹、黄杉大小蠹(D. pseudotsugae)、华山松大小蠹(D. armandi)、云杉大小蠹(D. micans)、红翅大小蠹(D. rufipennis)和黑脂大小蠹(D. terebrans)等则通过体表凹陷处携带真菌,没有特定的贮菌器构造。

红脂大小蠹在北美分布区域内伴生的长喙壳类真菌包括多种(表 1)。除了各种伴生菌单独和红脂大小蠹伴生外,几种真菌可以从受害寄主或成虫体表同时分离到,例如黑脂小蠹细帚霉和长梗细帚霉常常伴生在一起(Wingfield, 1983; Klepzig et al., 1991)。

表 1 红脂大小蠹伴生菌种类及其伴生程度 Tab.1 Fungi associated with D. valens and intensity of the association
2 红脂大小蠹主要伴生菌的生物、生态学 2.1 黑脂小蠹细帚霉(Leptographium terebrantis)

该菌在美国首先发现于黑脂大小蠹蛹室、坑道和虫体(Barras et al., 1971),除黑脂大小蠹外,与其他多种小蠹虫伴生,包括额瘤大小蠹、红脂大小蠹、长体根小蠹(Hylastes porculus)、松根茎树皮象(Hylobius radicis)、粗干小蠹(Hylurgops porosus)和波缝重齿小蠹(Ips pini)等(Wingfield, 1983; Harrington et al., 1983; Klepzig et al., 1991; Otrosina et al., 1997; Bennet et al., 1988)。我国虽然也有报道该菌与华山松大小蠹(D. armandi)伴生(陈辉等,2000),但并没有详细的菌种特征描述。由于伴生小蠹虫种类多及其寄主范围广泛,黑脂小蠹细帚霉的寄主包括多种针叶树:北美短叶松、扭叶松、食松(P. edulis)、长叶松(P. palustris)、美加红松(P. resinosa)、北美乔松(P. strobus)、欧洲赤松、火炬松(P. taeda)、日本黑松(P. thunbergii)和北美黄杉(Pseudotsuga menziesii)等。

黑脂小蠹细帚霉的主要形态特征(表 2)包括中等长度的分生孢子梗,产孢梗具有1~4级分支,初级分支包括2~3个瓶梗细胞。分生孢子无色单孢,具平截末端的倒卵形,孢子较大,为(4~10)μm×(2~3)μm等。

表 2 红脂大小蠹主要伴生菌形态特征描述 Tab.2 Morphological character descriptions of main fungi associated with Dendroctonus valens

该菌与生态习性相近的梨孢细帚霉(L. pyrinum)和Grosmannia clavigera形态上十分接近,而且具有很高的遗传亲缘关系(Zambino et al., 1992),被认为可能是同一个种下的不同形态变种。相比较黑脂小蠹细帚霉作为非贮菌器真菌与多种小蠹虫松散伴生,梨孢细帚霉和G. clavigera分别是圆头松大小蠹和中欧山松大小蠹/圆头松大小蠹体表贮菌器内紧密伴生的种类(Six et al., 1996; 1997)。梨孢细帚霉和G. clavigera可能是在长期遗传进化过程中为了适应贮菌器携带而从黑脂小蠹细帚霉衍生出来的2个种(Six et al., 2003)。然而4个基因位点DNA序列合成分析表明,在分化形成种的过程中,梨孢细帚霉较G. clavigera和黑脂小蠹细帚霉更原始,而G. clavigera和黑脂小蠹细帚霉仍然是正在发生分化的2个十分近似的种(Lim et al., 2004)。

另外,欧洲的纵坑切梢小蠹(Tomicus piniperda)的主要伴生菌温菲尔德细帚霉(L. wingfieldii)也被认为是黑脂小蠹细帚霉的同种异名。这是通过这2个种的包括模式菌株在内的北美、欧洲和亚洲(日本)种群的mtDNA rnl U11内含子和ITS序列以及IGS-RFLP分析和详细的形态学比较后得出的结论(Hausner et al., 2005)。温菲尔德细帚霉被认为是随欧洲入侵到北美的纵坑切梢小蠹携带传入北美的高致病性伴生菌(Jacobs et al., 2004)。

黑脂小蠹细帚霉属于长喙壳类真菌里致病性较强的一种真菌,它和红脂大小蠹的共生被认为是次期性害虫长期进化克服寄主抗性的一种适应性共生(Paine et al., 1997)。

主根伤口和非伤口接种2年生美国黄松和北美黄杉裸根苗,黑脂小蠹细帚霉不能侵染北美黄杉,但造成全部伤口接种的美国黄松苗木质部变色和流脂,苗木死亡率10%~40%;非伤口接种的美国黄松苗只有10%~20%出现症状(木质部变色和流脂),10%~20%的苗木死亡(Harrington et al., 1983)。2年和3年生北美乔松苗木根颈处伤口接种黑脂小蠹细帚霉,分别造成80%和70%的死亡率;在15年生的大树上接种,经过12个月后不造成寄主死亡和出现外观症状,但形成纵向可长达150 cm的木质部变色坏死,坏死往往延伸到根部(Wingfield, 1983; 1986)。干部伤口单独接种黑脂小蠹细帚霉可以引起70%~100%的2年生美国黄松裸根苗死亡,与Ceratocystis ips混合接种可致8%~96.4%的苗木死亡(Owen et al., 1987)。多菌种干部伤口接种胸径10~25 cm的美国黄松,通过对接种点附近树干段的染色液输导反应测定(菌丝扩展定殖的寄主组织由于输导组织堵塞而不被染色液染色),发现黑脂小蠹细帚霉菌丝组织引起寄主边材堵塞的面积和深度最大,引起边材纵向坏死的长度也是最大,表明黑脂小蠹细帚霉的强致病性(Parmeter et al., 1989)。

野外调查发现随着日本黑松和欧洲赤松枯萎症状的进程,黑脂小蠹细帚霉引起的木质部蓝变长度和面积以及黑脂大小蠹钻蛀危害的长度和面积加大,二者的复合侵染造成松树的大面积异常死亡(Highley et al., 1985)。另外,黑脂小蠹细帚霉可造成长叶松、美加红松生长衰退(Smalley et al., 1993; Bannwart et al., 1998Klepzig et al., 1991; 1995; Erbilgin et al., 2002)。

2.2 长梗细帚霉[L. procerum (Kendr.) Wingf.]

长梗细帚霉是该属内分布最广和了解最为深入的种类之一。最早在美国发现与白松(Pinus monticola)和北美乔松根衰病密切相关(Gill et al., 1951; Hubert, 1953; Kendrick, 1962; Dochinger, 1967; Tower, 1977; Sinclair et al., 1980),随后在加拿大(Kendrick, 1962; Hausner et al., 2003)、欧洲(Kendrick, 1962; Wingfield et al., 1991; Gibbs et al., 1991; Jacobs et al., 2001b)、新西兰(Shaw et al., 1980; Wingfield et al., 1983;Thwaites et al., 2005)、南非(Jacobs et al., 2001b; Zhou et al., 2001)、日本(Masuya et al., 2003)和韩国(Kim et al., 2005a)等地也报道其有广泛分布。

与长梗细帚霉伴生的小蠹虫包括南松大小蠹、黑脂大小蠹、红脂大小蠹、欧洲根小蠹(Hylastes ater)、长体根小蠹、哈氏松大根颈象(Hylobius abietis)、苍白根颈象(H. pales)、食根树皮象(H. rhizophagus)、松根茎树皮象、小干小蠹(Hylurgops palliatus)、粗干小蠹、红毛林小蠹(Hylurgus ligniperda)、波缝重齿小蠹、云杉八齿小蠹(Ips typographus)、瘤小蠹(Orthotomicus spp.)、松脂象(Pachylobius picivorus)、北方松木蠹象(Pissodes approximates)、喜马拉雅杉木蠹象(P. nemorensis)、带木蠹象(P. pini)、星坑小蠹(Pityogenes sp.)、钩小蠹(Pityokteines sp.)、细小蠹(Pityophthorus sp.)、纵坑切梢小蠹和茶材小蠹(Xyleborus sp.)等。长梗细帚霉的寄主也十分广泛,包括松属的北美短叶松、扭叶松、美国沙松(P. clausa)、萌芽松(P. echinata)、湿地松(P. elliottii)、白松、奥地利黑松(P. nigra)、长叶松、海岸松(P. pinaster)、美国黄松、辐射松(P. radiata)、美加红松、北美乔松、欧洲赤松、火炬松、日本黑松、矮松(P. virginiana)、巨冷杉(Abies grandis)、福莱胶枞(A. fraseri)、欧洲云杉(Picea abies)和北美黄杉等。

除了从上述昆虫体表和寄主组织内分离到长梗细帚霉外,在植物根系周围的土壤也能分离到该菌,该菌可在土壤中最长存活10个月以上(Lewis et al., 1985)。

长梗细帚霉区别于该属其他种的主要形态特征包括较长的分生孢子梗,以及由不同分生孢子梗密度组成的独特同心圆等(表 2)。基于DNA位点序列的系统发育研究表明,该种是本属内进化形成特别早的一个种,形成一个独特的单系(monoclade),与其他种有较远的亲缘关系。

Kendrick(1962)在发表该种的描述中指出,分生孢子梗最长为1 250 μm,然而后人的研究发现该种分生孢子梗最长可达2 200 μm(Hausner et al., 2005)。在笔者分离到的长梗细帚霉中国菌株中,部分菌株的分生孢子梗可达3 900 μm。这些具有特别长的分生孢子梗的菌株的DNA序列与模式菌株DNA序列完全一致,证明了将其鉴定为长梗细帚霉的准确性。

长梗细帚霉除了与白松衰退病紧密相关外,在自然界的调查中发现与美加红松衰退(Klepzig et al., 1991; 1995; 1996)、长叶松衰退(Bannwart et al., 1998)、火炬松衰退(Eckhardt et al., 2004)紧密联系在一起。被侵染的寄主表现为枝条生长缓慢,发芽延迟,针叶枯萎,根颈处溢出松脂,干基部出现条纹状的松脂浸渍带等症状(Sinclair et al., 1980; Lackner et al., 1982; 1983)。与长梗细帚霉紧密相关的这类病害也被称为长梗细帚霉根病(procera root disease)。

长梗细帚霉作为从这些感病寄主中分离到的优势菌种,表明该真菌很可能是病害的初期性病原(primary pathogen),然而接种试验结果却并不完全支持这一观点。用孢子液蘸根和根部伤口接种,可以造成幼苗死亡和侧根显著减少(Lackner et al., 1982; 1983; Eckhardt et al., 2004);然而,无论幼苗还是成年树干部伤口接种仅造成局部范围的损伤和木质部变色,不表现出病害症状和寄主死亡(Harrington et al., 1983; Wingfield, 1983; 1986; Rane et al., 1987; Masuya et al., 2003; Eckhardt et al., 2004),从而被认为是一种弱寄生菌。而红脂大小蠹的另一常见伴生菌黑脂小蠹细帚霉的致病性明显大于长梗细帚霉(Harrington et al., 1983Wingfield, 1983)。

野外调查表明松树衰退病是包括生物和非生物因素在内的多因子作用的综合症,包括长梗细帚霉在内的多种病原真菌、害虫、缺乏天敌、不利的土壤条件(Barnard et al., 1985; Klepzig et al., 1991; Otrosina et al., 1997; Erbilgin et al., 2002)等共同或次序作用引起寄主死亡。尽管长梗细帚霉不能直接造成成年寄主树木的死亡,但能够降低寄主活力,在其他因素的胁迫下,例如排水不畅(Tower, 1977; Smith, 1991)、松疱锈病(Livingston et al., 1982)和空气污染(Lackner et al., 1983)等条件,加大寄主死亡率。

2.3 温菲尔德细帚霉(L. wingfieldii Morelet)

温菲尔德细帚霉目前分布于欧洲和北美,主要与纵坑切梢小蠹稳定伴生,另外相伴生的小蠹还有云杉小根小蠹(Hylastes opacus)、小干小蠹、波缝重齿小蠹以及红脂大小蠹,寄主包括欧洲赤松、土耳其松(P. brutia)和北美乔松(Morelet, 1988; Lieutier et al., 1989; Solheim et al., 1991; Wingfield et al., 1991; Gibbs et al., 1991; Jacobs et al., 2004)。在日本也有报道与纵坑切梢小蠹伴生(Masuya et al., 2003)。

温菲尔德细帚霉具有细帚霉属典型的形态特征,青霉状分支的分生孢子梗和无数分生孢子粘连在一起形成的黏性孢子头,透明、无隔、具平截末端和圆顶的长椭圆形分生孢子(表 2)。

温菲尔德细帚霉的致病性在该属内是仅次于瓦格纳细帚霉(L. wageneri)的种类之一。高密度树干伤口接种成年苏格兰松,造成边材蓝变、堵塞、韧皮部坏死和树木死亡,随着接种浓度的增大出现这些症状的比例也增大(Solheim et al., 19911993; 2001叶辉等, 1997)。相对致病力测定表明温菲尔德细帚霉引起韧皮部坏死范围最大(Masuya et al., 2003),其致病性较长梗细帚霉、日本赤松细帚霉(L. pini-densiflorae Masuya & Wingfield)和蛇形细帚霉(L. serpens (Goid.) Wingf.)等都大。温菲尔德细帚霉与纵坑切梢小蠹的稳定伴生及其较强的致病性,预示着在小蠹虫入侵寄主建立种群过程中伴生菌可能扮演着重要作用(Lieutier et al., 1989; Solheim et al., 1993)。

2.4 瓦格纳长喙壳[Grosmannia wageneri (Goheen & Cobb) Zipfel, de Beer & Wingf.]

瓦格纳长喙壳为瓦格纳细帚霉美国黄松变种(L. wageneri var. ponderosum Harr. & Cobb)的有性型,分布于美国西部。与黑根小蠹(Hylastes nigrinus)、带纹木蠹象(Pissodes fasciatus)和瘤森林象(Steremnius carinatus)伴生(Harrington et al., 1985; Witcosky et al., 1985; 1986),寄主包括美国黄松、黑材松(P. jeffreyi)和扭叶松(Jacobs et al., 2001a)。瓦格纳长喙壳引起的针叶树黑根病(Black-stain root disease, BSRD)造成美国西部大量寄主死亡,带来严重的经济损失(Harrington, 1988)。

该种主要形态特征包括产孢梗具2~3级分支,初级分支包括2~5个瓶梗细胞,中央细胞明显粗大。分生孢子无色单孢,具平截末端的长椭圆形,大小为(4~7)μm×(1~2)μm。最适生长温度为20 ℃(表 2)。

接种表明瓦格纳长喙壳是一种强致病性病原物(Harrington et al., 1983),引起的黑根病表现出系统性病害(维管束病害)的症状。病害初期,寄主顶梢生长减缓、针叶失绿。随着病害的进程,老针叶过早脱落,新针叶发育滞缓、变黄,侧枝节间生长明显减少,树干基部出现损伤溢出树脂。最后整个树冠表现为针叶稀疏,树木迅速死亡。由于瓦格纳长喙壳菌丝只侵染管胞,造成寄主边材条纹状变黑,变色范围从根部向上延伸。菌丝组织的侵染使得树液流动阻塞,从而最终造成树木死亡。由于病原可以通过树木根系之间的接触和嫁接小范围传播,往往在林分内形成一个病害中心,寄主成簇死亡。

3 讨论

真菌与昆虫的伴生与植物健康存在着密切的关系,多年来一直是国际上相关领域研究的热点。研究层次从认识昆虫-真菌之间的组合开始,一直深入到共生体内二者的互作、与寄主的互作,以及包括螨类等其他生物体的多元化共生体系的互作,及各种互作的作用机制(Wingfield et al., 1993; Paine et al., 1997; Klepzig et al., 2001; Kirisits, 2004)。这些互作包含了昆虫和真菌的营养共生、昆虫携带传播真菌机制、共生真菌协同小蠹虫克服寄主抗性、共生真菌拮抗其他真菌以保护小蠹虫正常发育等等。有关红脂大小蠹与真菌之间的共生,由于二者属于松散型伴生关系以及红脂大小蠹往往作为一种次期性害虫危害寄主,而限制了这种共生关系的深刻认识。小蠹虫作为外来有害生物入侵到一个新的生态系统的同时,往往会作为媒介将其原产地的伴生病原真菌一并带入到该系统内,进一步引起了新物种的入侵(Jacobs et al., 2003; 2004; Hausner et al., 2005; Zhou et al., 2007),增加了对生态系统的威胁。同时入侵小蠹虫也能迅速与本地真菌形成稳定的伴生关系。借鉴诸如“云杉八齿小蠹-伴生菌”、“额瘤南松大小蠹-伴生菌”等共生体系的深入了解,“红脂大小蠹-伴生菌”共生体以及我国其他小蠹科昆虫伴生菌今后应加强以下几个方面的研究。

3.1 小蠹虫栖境真菌的多样性

我国对于小蠹虫伴生菌的认识远远落后于欧美国家,仅有少量的研究报道几种长喙壳类真菌与昆虫的伴生。随着研究领域的拓宽和深入,长喙壳类真菌在我国的分布肯定远远不止这些种。

3.2 不同地区同一种小蠹虫真菌区系组成的变化

尤其对于像红脂大小蠹这类外来入侵生物,研究不同生境下的伴生真菌区系组成,对于明确外来物种传入、种群建立和传播扩散、造成重大危害以及防治途径的探索具有直接作用。在我国和欧洲,与纵坑切梢小蠹伴生的真菌种类截然不同,由此推断该小蠹在这2个地区可能存在差别,可能是2个种(Kim et al., 2005b),基于DNA序列的系统发育研究证实了这一点(Duan et al., 2004)。

3.3 伴生菌的致病性

前人的研究表明红脂大小蠹伴生菌具有较强的致病性。进一步的研究工作应该包括:根据每种伴生菌的具体生物生态学特性,有针对性地采取合适的接种方式,以及足够的重复试验,选取不同生境下的寄主为对象测定伴生菌的致病性。另外,模拟自然界各种伴生菌混生进行混合接种,测定对野外成年寄主树木和室内苗木的致病力。在明确致病性的基础上,进一步研究致病机制,包括毒素和ds RNA等真菌病毒感染在内的病理过程。

3.4 红脂大小蠹和伴生真菌之间的共生关系

小蠹虫和真菌的共生是一种广义上的共生,包括互惠共生、拮抗共生和其他形式的共生(Kirisits, 2004),相对于其他昆虫和伴生菌之间深入的共生关系的了解,红脂大小蠹及其伴生菌之间的共生关系研究几乎为空白。小蠹虫和真菌之间长期稳定的伴生关系表明二者之间存在着协同进化。通过人工培育和消毒处理,制造无菌昆虫的试验种群,进而接种伴生真菌建立模拟试验体系,是明确昆虫-真菌的共生关系,阐明共生体与寄主互作的理想模型。

参考文献(References)
陈辉, 袁锋. 2000. 华山松大小蠹带菌部位及贮菌器结构研究. 林业科学, 36(1): 53-57. DOI:10.3321/j.issn:1001-7488.2000.01.009
高宝嘉, 信金娜, 关慧元, 等. 2003. 红脂大小蠹的发生和危害规律. 动物学杂志, 38(5): 71-73. DOI:10.3969/j.issn.0250-3263.2003.05.016
李计顺, 常国彬, 宋玉双, 等. 2001. 实施工程治理控制红脂大小蠹虫灾——对红脂大小蠹暴发成因及治理对策的探讨. 中国森林病虫, 20(4): 41-44. DOI:10.3969/j.issn.1671-0886.2001.04.018
叶辉, Lieutier F. 1997. 伴生菌(L. wingfieldii)对苏格兰松病害作用研究. 森林病虫通讯, 16(4): 23-25.
殷惠芬. 2000. 强大小蠹的简要形态学特征和生物学特征. 动物分类学报, 25(1): 120. DOI:10.3969/j.issn.1000-0739.2000.01.022
张星耀, 骆有庆, 叶建仁, 等. 2004. 国家林业新时期的森林生物灾害研究. 中国森林病虫, 23(6): 8-12. DOI:10.3969/j.issn.1671-0886.2004.06.002
Bannwart D L, Otrosina W J, Roncadori R W. 1998. Blue-stain fungi associated with decline of longleaf pine. Phytopathology, 88(9): S5.
Barnard E L, Blakeslee G M, English J T, et al. 1985. Pathogenic fungi associated with sand pine root disease in Florida. Plant Disease, 69(3): 196-199. DOI:10.1094/PD-69-196
Barras S J, Perry T. 1971. Leptographium terebrantis sp. nov. associated with Dendroctonus terebrans in loblolly pine. Mycopathologia et Mycologia Applicata, 43(1): 1-10. DOI:10.1007/BF02051496
Bennet E M, Tattar T A. 1988. Bluestain fungi and insect vector interaction in Japanese black and Scots pine mortality. Arboricultural Journal, 12(3): 237-247. DOI:10.1080/03071375.1988.9746794
Cognato A I, Sun J H, Anducho-Reyes M A, et al. 2005. Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People's Republic of China. Agricultural and Forest Entomology, 7(1): 87-94. DOI:10.1111/afe.2005.7.issue-1
Dochinger L S. 1967. Leptographium root decline of eastern white pine. Phytopathology, 57: 809 (Abstract).
Duan Y, Kerdelhue C, Ye H, et al. 2004. Genetic study of the forest pest Tomicus piniperda (Coleoptera, Scolytidae) in Yunnan province (China) compared to Europe: new insights for the systematics and evolution of the genus Tomicus. Heredity, 93: 416-422. DOI:10.1038/sj.hdy.6800518
Eckhardt L G, Jones J P, Klepzig K D. 2004. Pathogenicity of Leptographium species associated with Loblolly pine decline. Plant Disease, 88(11): 1174-1178. DOI:10.1094/PDIS.2004.88.11.1174
Erbilgin N, Raffa K F. 2002. Association of decline red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. Forest Ecology and Management, 164(1): 221-236.
Gibbs J N, Inman A. 1991. The pine shoot beetle Tomicus piniperda as a vector of blue stain fungi to windblown pine. Forestry, 64(3): 239-249. DOI:10.1093/forestry/64.3.239
Gill L S, Leaphart C D, Andrews S R. 1951. Preliminary results of inoculations with a species of Leptographium on Western white pine. Forest Pathology Special Release, 35: 1-14.
Harrington T C, Cobb F W, Lownsbery J W. 1985. Activity of Hylastes nigrinus, a vector of Verticicladiella wageneri, in thinned stands of Douglas-fir. Canadian Journal of Forest Research, 15: 519-523. DOI:10.1139/x85-085
Harrington T C, Cobb F W. 1983. Pathogenicity of Leptographium and Verticicladiella spp. isolated from roots of western North American conifers. Phytopathology, 73(4): 596-599. DOI:10.1094/Phyto-73-596
Harrington T C. 1988. Leptographium species, their distributions, hosts and insect vectors//Harrington T C and Cobb F W. Leptographium root disease on conifers. Minnesota: American Phytopathological Society Press, 1-39.
Hartig R. 1878. Die Zersetzungserscheinungen des Holzes der Nadelbäume und der Eiche in forstlicher, botanischer und chemischer Richtung. Berlin: Julius Springer.
Hausner G, Davis C N, Gibb E A, et al. 2003. Fungi associated with the European pine shoot beetle, Tomicus piniperda, in southern Ontario. Canadian Journal of Plant Pathology, 25: 425.
Hausner G, Iranpour M, Kim J J, et al. 2005. Fungi vectored by the introduced bark beetle Tomicus piniperda in Ontario, Canada, and comments on the taxonomy of Leptographium lundbergii, Leptographium terebrantis, Leptographium truncatum, and Leptographium wingfieldii. Canadian Journal of Botany, 83(10): 1227-1237.
Highley L, Tattar T A. 1985. Leptographium terebrantis and black turpentine beetles associated with blue stain and mortality of black and scots pines on Cape Cod, Massachusetts. Plant Disease, 69(6): 528-530. DOI:10.1094/PD-69-528
Hubert E F. 1953. Studies of Leptographium isolated from western white pine. Phytopathology, 43: 637-641.
Jacobs K, Bergdahl D R, Wingfield M J, et al. 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108(4): 411-418. DOI:10.1017/S0953756204009748
Jacobs K, Seifert K A, Harrison K J, et al. 2003. Identity and phylogenetic relationships of ophiostomatoid fungi associated with invasive and native Tetropium species (Coleoptera: Cerambycidae) in Atlantic Canada. Canadian Journal of Botany, 81(4): 316-329. DOI:10.1139/b03-025
Jacobs K, Wingfield M J, Uzunovic A, et al. 2001b. Three new species of Leptographium from pine. Mycological Research, 105(4): 490-499. DOI:10.1017/S0953756201003860
Jacobs K, Wingfield M J. 2001a. Leptographium Species: Tree Pathogens, Insect Associates, and Agents of Blue-Stain. Minnesota: American Phytopathological Society Press.
Kendrick W B. 1962. The Leptographium complex. Verticicladiella Hughes. Canadian Journal of Botany, 40(6): 771-797.
Kim G H, Kim J J, Lim Y W, et al. 2005a. Ophiostomatoid fungi isolated from Pinus radiata logs imported from New Zealand to Korea. Canadian Journal of Botany, 83(3): 272-278. DOI:10.1139/b04-170
Kim J J, Lim Y W, Breuil C W, et al. 2005b. A new Leptographium species associated with Tomicus piniperda infesting pine logs in Korea. Mycological Research, 109(3): 275-284. DOI:10.1017/S0953756204002060
Kirisits T. 2004. Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi//Lieutier F, Day K R, Battisti A, et al. Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis. The Netherlands: Kluwer Academic Publishers, 181-235.
Klepzig K D, Moser J C, Lombardero F J, et al. 2001. Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis, 30: 83-96.
Klepzig K D, Raffa K F, Smalley E B. 1991. Association of an insect-fungal complex with Red Pine decline in Wisconsin. Forest Science, 37(4): 1119-1139.
Klepzig K D, Six D L. 2004. Bark beetle-fungal symbiosis: Context dependency in complex associations. Symbiosis, 37: 189-205.
Klepzig K D, Smalley E B, Raffa K F. 1995. Dendroctonus valens and Hylastes porculus (Coleoptera: Scolytidae): Vectors of pathogenic fungi (Ophiostomatales) associated with red pine decline disease. The Great Lakes Entomologist, 28(1): 81-88.
Klepzig K D, Smalley E B, Raffa K F. 1996. Combined chemical defenses against an insect-fungal complex. Journal of Chemical Ecology, 22(8): 1367-1388. DOI:10.1007/BF02027719
Lackner A L, Alexander S A. 1982. Occurrence and pathogenicity of Verticicladiella procera in Christmas tree plantations in Virginia. Plant Disease, 66(3): 211-212.
Lackner A L, Alexander S A. 1983. Root disease and insect infestations on air-pollution-sensitive Pinus strobus and studies of pathogenicity of Verticicladiella procera. Plant Disease, 67(6): 679-681. DOI:10.1094/PD-67-679
Lewis K J, Alexander S A. 1985. Germinability over time of Verticicladiella procera propagules in artificially infested soil and their inability to cause disease. Plant Pathology, 75(11): 1337.
Liebhold A M, Macdonald W L, Bergdahl D, et al. 1995. Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science Monographs 30, The Society of American Foresters, 1-49.
Lieutier F, Yart A, Garcia J, et al. 1989. Phytopathogenic fungi associated with two bark beetles of scots pine (Pinus sylvestris L.) and preliminary studies of their aggressiveness for the host. Annales des Sciences Forestieries, 46: 201-216. DOI:10.1051/forest:19890301
Lim Y W, Alamouti S M, Kim J J, et al. 2004. Multigene phylogenies of Ophiostoma clavigerum and closely related species from bark beetle-attacked Pinus in North America. FEMS Microbiology Letters, 237(1): 89-96. DOI:10.1111/fml.2004.237.issue-1
Livingston W H, Wingfield M J. 1982. First report of Verticicladiella procera on pines in Minnesota. Plant Disease, 66(3): 260-261.
Marmolejo J G, Butin H. 1990. New conifer-inhabiting species of Ophiostoma and Ceratocystiopsis (Ascomycetes, Microascales) from Mexico. Sydowia, 42: 193-199.
Masuya H, Kaneko S, Yamaoka Y. 2003. Comparative virulence of blue-stain fungi isolated from Japanese red pine. Journal of Forest Research, 8(2): 83-88. DOI:10.1007/s103100300009
Morelet M. 1988. Observations sur trios Deutéromycètes inféodés aux pins. Annales de la Société des Sciences Naturelles et d'Archéollogie de Toulon et du Var, 40: 41-43.
Otrosina W J, Hess N J, Zarnoch S J, et al. 1997. Blue-stain fungi associated with roots of southern pine trees attacked by the southern pine beetle, Dendroctonus frontalis. Plant Disease, 81(8): 942-945. DOI:10.1094/PDIS.1997.81.8.942
Owen D R, Lindahl K Q, Wood D L, et al. 1987. Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis, and D. ponderosae to ponderosa pine seedlings. Phytopathology, 77(4): 631-636. DOI:10.1094/Phyto-77-631
Owen D R, Wood D L, Parmeter J R. 2005. Association between Dendroctonus valens and black stain root disease on ponderosa pine in the Sierra Nevada of California. Canadian Entomologist, 137(3): 367-375. DOI:10.4039/n04-084
Paine T D, Raffa K F, Harrington T C. 1997. Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42: 179-206. DOI:10.1146/annurev.ento.42.1.179
Parmeter J R, Slaughter G W, Chen M M, et al. 1989. Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology, 79(7): 768-772. DOI:10.1094/Phyto-79-768
Perry T J. 1991. A synopsis of the taxonomic revisions in the genus Ceratocystis including a review of blue-stain species associated with Dendroctonus bark beetles. General Technical Report SO-86, New Orleans, L. A. : U. S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1-16.
Rane K K, Tattar T A. 1987. Pathogenicity of blue-stain fungi associated with Dendroctonus terebrans. Plant Disease, 71(10): 879-883. DOI:10.1094/PD-71-0879
Rappaport N G, Owen D R, Stein J D. 2001. Interruption of semiochemical-mediated attraction of Dendroctonus valens (Coleoptera: Scolytidae) and selected non-target insects by verbenone. Environmental Entomology, 30(5): 837-841. DOI:10.1603/0046-225X-30.5.837
Sala O E, Chapin F S, Armesto J J, et al. 2000. Global Biodiversity Scenarios for the Year 2100. Science, 287(5459): 1770-1774. DOI:10.1126/science.287.5459.1770
Schweigkofler W, Otrosina W J, Smith S L, et al. 2005. Detection and quantification of Leptographium wageneri, the cause of black-stain root disease, from bark beetles (Coleoptera: Scolytidae) in Northern California using regular and real-time PCR. Canadian Journal of Forest Research, 35(8): 1798-1808. DOI:10.1139/x05-077
Shaw C G, Dick M. 1980. Verticicladiella root disease of Pinus strobes in New Zealand. Plant Disease, 64: 96-98. DOI:10.1094/PD-64-96
Sinclair W A, Hudler G W. 1980. Tree and shrub pathogens new or noteworthy in New York State. Plant Disease, 64: 590-592. DOI:10.1094/PD-64-590
Six D L, Harrington T C, Steimel J, et al. 2003. Genetic relationships among Leptographium terebrantis and the mycangial fungi of three western Dendroctonus bark beetles. Mycologia, 95(5): 781-792. DOI:10.1080/15572536.2004.11833037
Six D L, Paine T D. 1996. Leptographium pyrinum is a mycangial fungus of Dendroctonus adjunctus. Mycologia, 88(5): 739-744. DOI:10.1080/00275514.1996.12026711
Six D L, Paine T D. 1997. Ophiostoma clavigerum is the mycangial fungus of the Jeffrey pine beetle, Dendroctonus jeffreyi. Mycologia, 89(6): 858-866. DOI:10.1080/00275514.1997.12026856
Smalley E B, Raffa K F, Proctor R H, et al. 1993. Tree responses to infection by species of Ophiostoma and Ceratocystis//Wingfield M J, Seifert K A and Webber J F. Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. Minnesota: American Phytopathological Society Press, 207-217
Smith V L. 1991. Occurrence of procerum root disease caused by Leptographium procerum on white pine in Connecticut. Plant Disease, 75: 431.
Solheim H, Krobene P, Långström B. 2001. Effects of growth and virulence of associated blue-stain fungi on host colonization behaviour of the pine shoot beetles Tomicus minor and T. piniperda. Plant Pathology, 50(1): 111-116. DOI:10.1046/j.1365-3059.2001.00541.x
Solheim H, Långström B, Hellqvist C. 1993. Pathogenicity of the blue-stain fungi Leptographium wingfieldii and Ophiostoma minus to Scots pine: effect of tree pruning and inoculum density. Canadian Journal of Forest Research, 23(7): 1438-1443. DOI:10.1139/x93-181
Solheim H, Långström B. 1991. Blue-stain fungi associated with Tomicus piniperda in Sweden and preliminary observations on their pathogenicity. Annales des Sciences Forestieries, 48(2): 149-156. DOI:10.1051/forest:19910203
Sun J H, Gillette N E, Miao Z W, et al. 2003. Verbenone interrupts attraction to host volatiles and reduces attack on Pinus tabulaeformis by Dendroctonus valens LeConte (Coleoptera, Scolytidae) in the People's Republic of China. Canadian Entomologist, 135: 721-732. DOI:10.4039/n03-021
Towers B. 1977. The occurrence of Verticicladiella procera in Pennsylvania: 1976. Plant Disease Reporter, 61(6): 477.
Wingfield M J, Gibbs J N. 1991. Leptographium and Graphium species associated with pine-infesting bark beetles in England. Mycological Research, 95(11): 1257-1260. DOI:10.1016/S0953-7562(09)80570-4
Wingfield M J, Marasas W F O. 1983. Some Verticicladiella species, including V. truncata sp. nov., associated with root diseases of pine in New Zealand and South Africa. Transactions of the British Mycological Society, 80(2): 231-236. DOI:10.1016/S0007-1536(83)80005-9
Wingfield M J, Seifert K A, Webber J F. 1993. Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. Minnesota: American Phytopathological Society Press.
Wingfield M J. 1983. Association of Verticicladiella procera and Leptographium terebrantis with insects in the Lake States. Canadian Journal of Forest Research, 13: 1238-1245. DOI:10.1139/x83-162
Wingfield M J. 1986. Pathogenicity of Leptographium procerum and Leptographium terebrantis on Pinus strobus seedlings and established trees. European Journal of Forest Pathology, 16(5/6): 299-308.
Witcosky J J, Hansen E M. 1985. Root-colonizing insects recovered from Douglas-fir in various stages of decline due to black-stain rood disease. Phytopathology, 75: 399-402. DOI:10.1094/Phyto-75-399
Witcosky J J, Schowalter T D, Hansen E M. 1986. Hylastes nigrinus (Coleoptera: Scolytidae), Pissodes fasciatus, and Steremnius carinatus (Coleoptera: Curculionidae) as vectors of black-stain rood disease of Douglas-fir. Environmental Entomology, 15: 1090-1095. DOI:10.1093/ee/15.5.1090
Yan Z L, Sun J H, Owen D, et al. 2005. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodiversity and Conservation, 14(7): 1735-1760. DOI:10.1007/s10531-004-0697-9
Zambino P J, Harrington T G. 1992. Correspondence of isozyme characterization with morphology in the asexual genus Leptographium and taxonomic implications. Mycologia, 84(1): 12-25. DOI:10.1080/00275514.1992.12026100
Zhou X D, De Beer Z W, Wingfield B D, et al. 2001. Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia, 53(2): 290-300.
Zhou X D, Burgess T I, de Berr Z W, et al. 2007. High intercontinental migration rates and population admixture in the sapstain fungus Ophiostoma ips. Molecular Ecology, 16(1): 89-99.