舰船科学技术  2025, Vol. 47 Issue (17): 117-123    DOI: 10.3404/j.issn.1672-7649.2025.17.019   PDF    
半潜式浮式风机系泊系统特性研究
邹大伟, 赵业彬     
山东电力工程咨询院有限公司,山东 济南 250013
摘要: 为深入探究极端海况和施工误差下浮式风机系泊系统的动力特性,基于OrcaFlex数值模拟软件,建立了15 MW半潜式风机系泊平台耦合模型。计算了极端海况及施工误差因素对系泊系统动力响应的影响,包括平台稳性、位移幅值和系泊缆张力变化等关键参数。同时,针对停机后可能出现的断锚这一危险工况进行模拟分析,获取在断锚状态下系泊系统的受力分布和平台的运动响应情况。结果表明:极端海况断锚后3×1系泊布置形式纵摇变化较大且失去在位能力,3×2、3×3形式较为稳定,能保证浮式风机在位,且锚链安全系数符合规范要求。施工误差情况下风机横摇、纵摇和垂荡较为稳定,锚链安全系数符合规范要求,但纵荡极大,施工时应尽量避免系泊角度误差。
关键词: 海上风电     半潜式风机     极端海况     施工误差     断锚    
Characteristics of semi-submersible floating wind turbine mooring system
ZOU Dawei, ZHAO Yebin     
Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China
Abstract: In order to deeply explore the dynamic characteristics of the floating wind turbine mooring system under extreme sea conditions and construction errors, a coupled model of a 15 MW semi-submersible wind turbine mooring platform was established based on the OrcaFlex numerical simulation software. The influence of extreme sea conditions and construction errors on the dynamic response of the mooring system was calculated, including key parameters such as platform stability, displacement amplitude, and mooring cable tension changes. At the same time, a simulation analysis was conducted for the dangerous condition of anchor breaking after shutdown, and the force distribution of the mooring system and the motion response of the platform under the anchor breaking state were obtained. The results show that after anchor breaking in extreme sea conditions, the 3×1 mooring arrangement has a large pitch change and loses its ability to stay in place. The 3×2 and 3×3 arrangements are relatively stable and can ensure that the floating wind turbine is in place, and the anchor chain safety factor meets the requirements of the specification. Under the condition of construction error, the roll, pitch and heave of the wind turbine are relatively stable, and the anchor chain safety factor meets the requirements of the specification, but the surge is extremely large, and the mooring angle error should be avoided as much as possible during construction.
Key words: offshore wind power     semi-submersible wind turbine     extreme sea conditions     construction errors     broken anchors    
0 引 言

近年来,随着能源需求的持续攀升以及陆上风电资源的逐渐饱和,海上风电开发逐渐向深远海迈进。然而,深远海强风、巨浪、海流等复杂多变的极端海洋环境,给海上风电设备带来严峻挑战。同时由于可能出现的施工误差因素,系泊缆预张力以及安装角度会并不满足设计要求。在极端海况和施工误差情况下,风机所受的风浪流荷载大幅增加,系泊系统不仅要承受巨大的静态和动态拉力,还需要应对复杂的耦合动力作用。半潜式浮式风机系泊系统特性研究已成为当前海洋新能源开发领域亟待攻克的关键技术难题之一,其复杂性吸引了众多国内外学者进行深入探索。

Wang等[1]发现浅水极端条件下传统链式悬链系泊系统约束的浮动平台易拖缆或断缆,为此提出恒张力系泊系统,由配重块和绞车钢丝绳组成,能增加平台移动距离释放动能,使最大系泊力不超链条断裂强度,提高浮式风机生存能力。Xu等[2]测试3种混合锚泊系统动态响应,提出混合分布模型分析系泊张力与疲劳损伤,该模型预测表现更优。Ramya等[3]针对15 MW风机的3线和6线系泊形式研究,用OpenFAST模拟故障,考虑极端荷载,其研究的结果将有助于意外极限状态设计和防止类似的大型FOWT系统失效。

国内也有学者开展系泊研究,单鹏昊等[4]对Classic-Spar平台及其系泊缆索在极限海况下做时域非线性耦合研究,分析缆索断裂时平台运动及缆索张力动力响应统计特性,发现风浪流同向极端海况下,迎浪方向缆索断裂影响显著。孟星宇等[5]以10 MW浮式风机系泊系统为对象,分析不同工况与系泊参数下的变化规律,结果表明提高导缆孔高度等方式可消除系泊缆松弛。唐梓珈[6]选取不同材料半潜式风机平台,经数值模拟软件动力计算完成深度设计,揭示不同海况下平台运动特征及环境荷载影响差异。邓露等[7]基于经典悬链线理论,采用准静态分析法提出系泊系统设计方法,得出浮式平台相关参数变化规律,为半潜型浮式风机系泊设计提供参考。

目前关于半潜式浮式风机系泊系统的研究主要集中在系泊布置及系泊优化方面,针对在极端条件下半潜式浮式风机系泊系统动力特性的研究还较少,本文基于OrcaFlex数值模拟软件,建立半潜式15 MW风机系泊耦合模型,开展半潜式风机在极端条件下平台运动响应及系泊张力变化研究。

1 数值计算基本理论

系泊其首要作用是定位,能使半潜式海洋平台等海洋结构物在海洋中保持相对固定的位置,防止因水流、风力等因素而随意漂移,这对于海上资源开发等活动的安全与高效开展至关重要。同时,系泊系统承担着承受外力和缓冲的功能。它能够抵御风浪流施加于海洋结构物的作用力,并通过自身的弹性变形吸收能量,有效缓冲结构物的晃动,降低因外力冲击导致的结构疲劳和损坏风险,保障海洋结构物及其附属设备的稳定运行和使用寿命,以悬链线模型为例,对系泊系统进行准静态分析。

将悬链线模型划分为无数段并取某一段弧微元进行受力分析[8],如图1所示,设定微元段程度为${\text{d}}s$,锚链单位长度的重力为$w$,下端张力为$T$,张力增量为${\text{d}}T$$E$为弹性模量,$A$为锚链截面面积。

图 1 系泊微元受力和悬链线受力示意图[8] Fig. 1 Schematic diagram of mooring microelement force and catenary force

假设锚链各段微元受力相等且水平方向无拉伸变形,建立平衡方程:

$ {\text{d}}H = 0 。$ (1)

式中:${\text{d}}H$为水平力增量。

沿着系泊微元切向可以建立拉力与重力在切向分力上的平衡方程:

$ (T + {\text{d}}T)\cos d\varphi - T = w\sin \varphi {\text{d}}s。$ (2)

沿着系泊微元法向可以建立拉力与重力在法向分力上的平衡方程:

$ (T + {\text{d}}T)\sin d\varphi = w\cos \varphi {\text{d}}s 。$ (3)

对式(3)中省去高阶无穷小量整理可得:

$ {\text{d}}T = w\sin \varphi {\text{d}}s,$ (4)
$ T{\text{d}}\varphi = w\cos \varphi {\text{d}}s 。$ (5)

由质量守恒定律可得,质量不随着变形而变化,可得

$ w{\text{d}}s = \tilde w{\text{d}}\tilde s。$ (6)

式中:$\tilde w$为拉伸后单位长度的重力;$\tilde s$为拉伸后的长度。

2 模型的建立 2.1 半潜式平台

本文采用Umaine VolturnUS-S[9]半潜式平台,VolturnUS-S半潜平台具有较大的甲板面积,可搭载较大功率的风机设备,能适应恶劣海况,有效减少波浪和水流对平台的冲击,高效支持海上作业,提升能源开发效率与安全性,该平台由浮式基础、中心立柱、立式浮筒、水平浮箱和水平支撑组成,如图2所示,VolturnUS-S半潜平台的具体参数如表1所示。

图 2 Umaine VolturnUS-S半潜式平台 Fig. 2 Umaine Volturn US-S semi-submersible platform

表 1 VolturnUS-S半潜式浮式基础主要参数 Tab.1 Main parameters of Volturn US-S semi-submersiblefloating foundation
2.2 上部风机

本文上部风机采用IEA-15-240-RWT风机[10],该风机具有安装方便快捷,装机规模灵活的优点,如图3所示,具体风机参数如表2所示。

图 3 IEA-15-240-RWT风机 Fig. 3 IEA-15-240-RWT wind turbine

表 2 IEA-15-240-RWT设计参数 Tab.2 IEA-15-240-RWT Design Parameters
2.3 环境条件

模型水深为200 m。不规则波谱采用JONSWAP谱,有义波高为3 m,波谱峰值周期为8 s。风谱采用API谱,参考平均风速为20.0 m/s。海洋表面平均流速为1.0 m/s。

2.4 系泊缆

系泊缆是一种连接锚与船体的链条,用于抛锚时将船舶固定在特定位置,本文系泊缆为无档锚链。系泊缆钢筋直径为0.140 m,重量为3.825 kN/m,轴心刚度为1.674×106 kN,破断力为1.761×104 kN,系泊缆长度为850 m。

3 工况设计与结果分析 3.1 极端海况 3.1.1 工况设计

本节研究极端海况对半潜式浮式风机的影响,同时考虑了停机后可能出现的断锚情况。本文基于OrcaFlex数值模拟软件,建立了半潜式浮式风机-系泊模型,系泊布置形式为3×1、3×2和3×3,分别对应工况1~3。系泊布置3个浮筒间夹角为120°,在研究过程中,若选取过多的系泊缆夹角工况进行研究,虽然可以获取更全面的数据,但也会极大地增加计算成本,通过参考相关文献及工程案例[11,12],最终选取夹角为15°和夹角30°这2种夹角工况进行研究。本文选取风浪流同向的极端海洋工况,(即沿X轴负方向)开展研究,风浪流同向的工况会对系泊系统产生较大的荷载,是一种较为典型的工况,探究极端工况下不同系泊缆布置情况时,设定风浪流同向入射,可以规避风、浪、流多方向荷载协同作用所产生的干扰。系泊缆布置方式、坐标系设置、风浪流方向如图4所示。模拟时间为3600 s,为方便对比,半潜式浮式风机运动响应分析只选取16002000 s。系泊缆的预张力为1365 kN,考虑系泊缆受力大小,设置1800 s时工况1的系泊缆2、工况2的系泊缆3、工况3的系泊缆2于风机连接处断开。

图 4 极端海况系泊布置示意图 Fig. 4 Schematic diagram of mooring arrangement in extreme sea conditions
3.1.2 半潜式浮式风机运动响应分析

图5给出了极端海况下半潜式浮式风机断锚响应历时曲线和小提琴图。表3给出了极端海况下半潜式浮式风机运动响应统计值。断锚前,由图可见,工况1~工况3系泊布置形式的半潜式浮式风机均较为稳定。垂荡方面,由于系泊缆重力影响,工况3浮式风机垂荡均值为−1.40 m,工况1垂荡均值为0.10 m。垂荡幅值分别为1.81 m、1.72 m和1.68 m,表明系泊缆数量越多,浮式风机垂荡越稳定。横摇方面,由于风浪流方向均为X方向,对横摇影响很小,所以横摇均值差别很小。且横摇幅值分别为0.12°、0.10°和0.09°,表明随着系泊缆数量增多,浮式风机横摇稳定程度增加。纵摇方面,由于风荷载的作用,浮式风机会产生倾斜。随着系泊缆数量的增加,纵摇逐渐减小,纵摇均值分别为−1.95°、−1.79°和−1.64°。同时幅值也逐渐减小,分别为4.98°、4.58°和4.27°,表明随着系泊缆数量增多,浮式风机纵摇稳定程度增加。

图 5 极端海况下半潜式浮式风机断锚响应历时曲线和小提琴图 Fig. 5 Time curve and violin plot of anchor-breaking response of semi-submersible floating wind turbine under extreme sea conditions

表 3 极端海况下半潜式浮式风机运动响应统计值 Tab.3 Statistical values of motion response of semi-submersible floating wind turbines under extreme sea conditions

断锚后,垂荡方面,由于1根系泊缆的缺失,3种工况的垂荡均值都有所增加,代表浮式风机的上浮。同时幅值相比断锚前也均有增加,分别为2.17 m、1.86 m和1.79 m。其中工况1由于只剩2根系泊缆,垂荡的幅值增加程度最大,为0.36 m。工况2、工况3幅值增加程度差别较小。横摇方面,由历时曲线可知,断锚后工况1、工况3横摇变化较小,工况2横摇变化较大,幅值为0.54°。这首先是由于风浪流方向均为X方向,对横摇影响本就较小,其次是由于工况1、工况3断锚的系泊缆2方向为X方向,工况2为断锚的系泊缆3与X方向存在夹角。纵摇方面,由历时曲线可知,断锚后3个工况的风机均发生了较大的纵摇偏移。工况1纵摇角度最大可达−6.55°,幅值为6.03°,稳定性较差,超出了发电工况下的5°要求[13]。工况2、工况3纵摇均值为−2.80°和−2.55°,相对于断锚前均有增大,但仍在安全范围内。

图6可知,工况1由于只有3根系泊缆,断锚后缺少一侧的回复力,产生了巨大的纵荡位移,断锚导致的平均纵荡位移为−757.0 m。工况2、3断锚导致的纵荡在合理范围内,分别为−17.1 m和−7.5 m,小于水深200 m时浮式平台允许的30 m偏移量[14]

图 6 极端海况下半潜式浮式风机纵荡历时曲线 Fig. 6 Surge duration curve of semi-submersible floating wind turbine under extreme sea conditions
3.1.3 系泊缆张力响应分析

图7给出了极端海况下半潜式浮式风机断锚系泊缆张力历时曲线。表4给出了极端海况下半潜式浮式风机系泊缆张力统计值。本文选取导缆孔与锚链的连接位置处的系泊张力数据进行分析。可知工况1断锚前系泊缆2张力最大,均值为2573 kN,断锚后系泊缆5、8张力由1096 kN逐渐增加到1489 kN。工况2断锚前系泊缆1、3张力最大,均值为1964 kN。断锚后系泊缆1张力迅速增大,均值为2894 kN,系泊缆7、9张力略有减小,系泊缆4张力略有增大。工况3断锚后系泊缆1、3张力迅速增大,均值由1761 kN增加到2149 kN。由于断锚后剩余的系泊缆较多,浮式风机较为稳定,其余系泊缆张力变化较小。工况1~工况3系泊缆张力最大值分别为3316 kN、3473 kN、2421 kN,张力最大值出现在工况2。根据API-RP-2SK规范[15]中关于锚链安全系数的定义,安全系数=锚链破断力/系泊缆张力最大值。本节系泊缆的安全系数为17610 kN /3473 kN≈5.07,满足规范中安全系数大于1.67的要求。同时系泊缆张力最大值3473 kN小于IEA 15MW 风电机组系泊系统的最大系泊缆张力9904.89 kN[14],满足结构强度要求。

图 7 极端海况下半潜式浮式风机断锚系泊缆张力历时曲线 Fig. 7 Mooring cable tension time curve of semi-submersible floating wind turbine considering broken anchors under extreme sea conditions

表 4 极端海况下半潜式浮式风机系泊缆张力统计值 Tab.4 Statistical values of mooring cable tension of semi-submersible floating wind turbines under extreme sea conditions
3.2 施工误差 3.2.1 工况设计

在海上风电系泊缆施工过程中,由于安装时间较长导致风机漂移、吸力锚安装定位误差等原因,系泊缆会出现与设计不相符的角度偏差。本节研究施工误差对半潜式浮式风机的影响,假设由于施工误差,系泊缆6、7间角度为180°,同时考虑3×2和3×3这2种系泊布置形式。系泊缆布置方式、坐标系设置、风浪流方向如图8所示。3×2和3×3这2种系泊布置形式分别为工况4、工况5。模拟时间为3600 s。由于施工误差,系泊缆预张力存在差异,预张力范围为673~1522 kN。为方便对比,半潜式浮式风机运动响应分析和系泊缆张力分析只选取16002000 s。

图 8 施工误差系泊布置示意图 Fig. 8 Schematic diagram of mooring arrangement withconstruction error
3.2.2 半潜式浮式风机运动响应分析

图9给出了施工误差下半潜式浮式风机响应历时曲线和小提琴图。表5给出了施工误差下半潜式浮式风机运动响应统计值。可知,在垂荡方面,工况5系泊缆更多,在系泊缆重力作用下,其垂荡均值为−1.15 m。施工误差情况下,系泊缆的增加并未显著改善垂荡的波动,工况4、工况5垂荡幅值分别为1.84 m和1.85 m。横摇方面,由于风浪流方向均为X方向,且结构关于X轴对称,工况4、工况5的横摇均较小,且差别也较小。纵摇方面,工况4、工况5纵摇均值为1.05°和0.67°,代表系泊缆增加后,纵摇降低了36.2%,但幅值分别为5.03°和4.95°,并未有明显改善。

图 9 施工误差下半潜式浮式风机响应历时曲线和小提琴图 Fig. 9 Response time curve and violin plot of semi-submersible floating wind turbine under construction error

表 5 施工误差下半潜式浮式风机运动响应统计值 Tab.5 Statistical values of motion response of semi-submersible floating wind turbine under construction error

表6给出了施工误差下半潜式浮式风机纵荡值。由表可知,虽然增加了系泊缆,工况5的纵荡比工况4减小了16.88 m,但工况4、工况5的纵荡均非常大。结合前文,此种施工误差情况下,虽然垂荡、横摇和纵摇较小,但会出现巨大的纵荡位移,超过了浮式平台允许的偏移量[14]。施工过程中应尽可能避免系泊缆角度偏差的发生,为此可采用先进的测量设备与精准定位技术作为施工保障。可使用全球卫星导航系统,如北斗卫星导航系统,结合高精度的测量仪器,对系泊系统的各个部件进行精确测量和定位。此外,在系泊缆的安装过程中,利用张力监测设备实时监测缆绳的张力和角度,一旦发现偏差,及时进行调整,保证系泊缆按照设计要求进行安装。

表 6 施工误差下半潜式浮式风机纵荡值 Tab.6 Response time curve and violin plot of semi-submersible floating wind turbine under construction error
3.2.3 系泊缆张力响应分析

图10给出了施工误差下半潜式浮式风机系泊缆张力历时曲线。表7给出了施工误差下半潜式浮式风机系泊缆张力统计值。可知,工况4、5迎流方向的系泊缆6、7张力最大,均值分别为3151 kN和2734 kN。系泊缆张力最大值为3689 kN,出现在工况4的系泊缆6。其余系泊缆张力均较小,且较为稳定。本节系泊缆的安全系数为17610 kN /3689 kN ≈ 4.78,满足规范[15]中安全系数大于1.67的要求。同时系泊缆张力最大值3689 kN小于IEA 15 MW 风电机组系泊系统的最大系泊缆张力9904.89 kN[14],满足结构强度要求。

图 10 施工误差下半潜式浮式风机系泊缆张力历时曲线 Fig. 10 Tension duration curve of mooring cable of semi-submersible floating wind turbine under construction error

表 7 施工误差下半潜式浮式风机系泊缆张力统计值 Tab.7 Statistical value of mooring cable tension of semi-submersible floating wind turbine under construction error
4 结 语

1)极端海况下,断锚前系泊缆数量越多,半潜式浮式风机越稳定。断锚后工况1纵摇和工况2横摇变化较大,工况1纵摇角度超出了发电角度要求。断锚后工况1产生了巨大的纵荡位移−757.0 m,工况2、工况3断锚导致的纵荡在合理范围内,分别为−17.1 m和−7.5 m。断锚后迎流方向的系泊缆张力逐渐增大,张力最大值出现在工况2系泊缆1,锚链安全系数均满足API-RP-2SK规范的要求。

2)极端海况下,断锚后3×1系泊方式的浮式风机失去在位的能力,3×2和3×3系泊方式的浮式风机仍能保证在位状态。

3)施工误差下,系泊缆数量增加可使半潜式浮式风机纵摇及其幅值减小,但对垂荡和横摇稳定性影响较小。工况4、工况5的纵荡均较大,为216.44 m和199.56 m。工况4、工况5迎流方向的系泊缆张力最大,均值分别为3151 kN和2734 kN。张力最大值为3689 kN,出现在工况4的系泊缆6。锚链安全系数均满足API-RP-2SK规范的要求。

4)由于施工误差下浮式风机面对不利方向的风浪流会产生巨大的纵荡,施工时应尽可能避免系泊缆角度偏差。

参考文献
[1]
WANG K, CHU Y, HUANG S, et al. Preliminary design and dynamic analysis of constant tension mooring system on a 15 MW semi-submersible wind turbine for extreme conditions in shallow water[J]. Ocean Engineering, 2023, 283: 115089. DOI:10.1016/j.oceaneng.2023.115089
[2]
XU S, GUEDES SOARES C. Mixture distribution model for extreme mooring tension and mooring fatigue analysis due to snap loads[J]. Ocean Engineering, 2021, 234: 109245. DOI:10.1016/j.oceaneng.2021.109245
[3]
NIRANJAN R, RAMISETTI S B. Dynamic response of 15 mw floating wind turbine with non-redundant and redundant mooring systems under extreme and accidental conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2023, 145(6): 062002. DOI:10.1115/1.4062169
[4]
单鹏昊, 任慧龙, 李辉, 等. 极限海况下Spar平台系泊系统耦合动力分析[J]. 海洋工程, 2013, 31(2): 35-40.
[5]
孟星宇, 姜贞强, 徐郎君, 等. 浮式风机浅水系泊松弛-张紧特性[J]. 中国海洋平台, 2024, 39(2): 1-11,55. DOI:10.12226/j.issn.1001-4500.2024.02.20240201
[6]
唐梓珈. 浮式风机平台的系泊系统研究与耦合分析[D]. 长沙: 湖南大学, 2016.
[7]
邓露, 唐梓珈, 王彪, 等. 半潜型浮式风机运动特征及系泊系统的研究[J]. 船舶工程, 2016, 38(8): 1-6,26.
[8]
袁林. 极端海况下浮式风机系泊系统耦合动力响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[9]
LIU S, CHUANG Z, WANG K, et al. Structural parametric optimization of the VolturnUS-S semi-submersible foundation for a 15 MW floating offshore wind turbine[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1181. DOI:10.3390/jmse10091181
[10]
GAERTNER E, RINKER J, SETHURAMAN L, et al. IEA wind TCP task 37: definition of the IEA 15-Megawatt offshore reference wind turbine: NREL/TP-5000-75698[R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2020.
[11]
王晨昊. Dtu10MW风机半潜式平台系泊设计与研究[D]. 镇江: 江苏科技大学, 2023.
[12]
石兵. 浅海半潜式漂浮风机的新型系泊系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[13]
LIN L, CHEN M, YANG P, et al. Design and hydrodynamic performance of 15 MW Spar-type floating offshore wind turbine platform[J]. Chinese Journal of Ship Research, 2024, 19(4): 71−81.
[14]
黄心伟, 柳亦兵, 刘剑韬, 等. 半潜式平台结构尺寸对海上风电机组稳定性的影响研究[J]. 动力工程学报, 2024, 44(12): 1878-1886.
[15]
American Petroleum Institute (API). Design and analysis of stationkeeping systems for floating structures[S]. Washington: API, 2005.