在海洋工程领域,欠驱动船舶扮演着不可或缺的角色,在实际航行过程中,船舶易受多种外界因素干扰,如风、浪、流等,这使得轨迹跟踪控制面临诸多挑战[1,2]。因此,在复杂海况下,实施稳定且有效的控制策略对船舶轨迹跟踪至关重要,对于保障航行安全和任务执行具有重要意义。
近年来,关于欠驱动船舶轨迹跟踪控制的研究,已取得诸多成果。Yang等[3]通过采用反演法与李雅普诺夫理论相结合的方式,成功实现了非线性船舶系统的轨迹跟踪控制。这种方法具有较高的实用价值,为解决船舶轨迹跟踪问题提供了有效的解决方案。Zhang等[4]设计了一种连续的滑模控制器,该控制器能够确保系统的鲁棒性。张晓玲等[5]设计一种带扰动观测器的自适应动态面滑模控制方法,结合动态面技术解决了传统反演法的微分爆炸。沈智鹏等[6]提出动态面自适应输出反馈控制策略,利用观测器机制,确保了船舶轨迹跟踪误差的最终收敛有界。Li等[7]设计一种新的非奇异快速积分终端滑模控制器,具有更快的收敛速度和更少的抖振行为。
上述文献中,大部分研究采用的是基于时间触发的控制策略,即按照固定时间间隔进行控制信号的更新[8]。这种控制策略会使能源消耗增加,控制器和执行器的磨损加剧,为解决此问题,本文考虑引入事件触发控制策略[9,10],降低执行器对控制指令的响应频率。基于该思想,Deng等[11]提出一种基于事件触发的无人MSV复合学习航迹跟踪控制方法,该方法建立了一个事件触发自适应模型,用于生成状态的连续估计并指导控制律,从而显著降低了测量网络中的通信流量。李国进等[12]在基于航向逻辑切换自适应控制算法的基础上,引入事件触发机制,该算法能实现优异的跟踪性能,同时降低控制信号更新频率。Hua等[13]提出一种基于状态观测器的一类具有时滞和外部扰动的水面舰艇的事件触发无模型自适应控制算法,该算法有较好的跟踪效果,有效降低了控制信号的更新频率。
本文采用自适应滑模控制和事件触发机制相结合的方法,在RBF神经网络滑模控制的基础上,引入事件触发机制,研究欠驱动船舶的轨迹跟踪控制,通过仿真实验,验证所提控制策略的有效性与稳定性。
1 船舶轨迹跟踪数学模型研究欠驱动船舶轨迹跟踪问题时,通常仅考虑水平面内的纵荡、横荡和首摇3个自由度运动。同时,在实际情况下,由于船舶易受到外界未知环境因素的干扰和船舶模型参数存在不确定性,需要更加严谨地考虑这些因素对船舶轨迹跟踪控制的影响。因此,本文欠驱动水面船舶的模型表示为[14]:
$ \left\{ {\begin{split} &{\dot x = u\cos (\psi ) - v\sin (\psi )}, \\ & {\dot y = u\sin (\psi ) + v\cos (\psi )}, \\ & {\dot \psi = r}, \\ & {\dot u = \left( {\left( {{m_{22}}vr - {d_{11}}u - {f_{ {u}}}} \right) + {\tau _{ {u}}} + {\tau _{{ {wu}}}}} \right)/{m_{11}}} ,\\ & {\dot v = \left( {\left( { - {m_{11}}ur - {d_{22}}v - {f_{ {v}}}} \right) + {\tau _{{ {wv}}}}} \right)/{m_{22}}} ,\\ & {\dot r = \left( {\left( {{m_{11}} - {m_{22}}} \right)uv - {d_{33}}r - {f_{ {r}}} + {\tau _{ {r}}} + {\tau _{{ {wr}}}}} \right)/{m_{33}}} 。\end{split}} \right. $ | (1) |
式中:x、y分别为船舶的前进位移和横移位移;
本文的主要结果建立在以下假设基础上:
假设1 欠驱动船舶存在一阶导数和二阶导数,并且参考轨迹(xd,yd)具有光滑性。
假设2
定义位置跟踪误差为:
$ \left\{ {\begin{split}& {{x_{ {e}}} = {x_{ {d}}} - x},\\ & {{y_{ {e}}} = {y_{ {d}}} - y},\\& {{\psi _{ {e}}} = {\psi _{ {r}}} - \psi } 。\end{split}} \right. $ | (2) |
式中:
$ {\psi _{\text{r}}} = \frac{1}{2}\left[ {1 - {{\mathrm{sgn}}} \left( {{x_{{e}}}} \right)} \right]{{\mathrm{sgn}}} \left( {{y_{{e}}}} \right){\text π} + \arctan \left( {{y_{{e}}}/{x_{{e}}}} \right)。$ | (3) |
对式(2)求导可得:
$ \left\{ {\begin{split}& {{{\dot x}_{ {e}}} = {{\dot x}_{ {d}}} - u\cos \left( \psi \right) + v\sin \left( \psi \right)},\\& {{{\dot y}_{ {e}}} = {{\dot y}_{ {d}}} - u\sin \left( \psi \right) - v\cos \left( \psi \right)},\\ & {{{\dot \psi }_{ {e}}} = {{\dot \psi }_{ {r}}} - r}。\end{split}} \right. $ | (4) |
设计纵向速度
$ \left\{ {\begin{split}& {\alpha _{ {u}}} = \left[ {{k_{ze}}\left( {{z_{ {e}}} - {\zeta _{xy}}} \right) + {{\dot x}_{ {d}}}\cos \left( {{\psi _{ {r}}}} \right) + } \right. \\ &\qquad \left. { {{\dot y}_{ {d}}}\sin \left( {{\psi _{ {r}}}} \right) - v\sin \left( {{\psi _{ {e}}}} \right)} \right]{ {arc}}\cos \left( {{\psi _{ {e}}}} \right), \\& {{\alpha _{ {r}}} = {k_{\psi { {e}}}}{\psi _{ {e}}} + {{\dot \psi }_{ {r}}}} 。\end{split}} \right. $ | (5) |
式中:
对
$ {\dot z_{{e}}} = {\dot x_{{d}}}\cos \left( {{\psi _{{r}}}} \right) + {\dot y_{{d}}}\sin \left( {{\psi _{{r}}}} \right) - u\cos \left( {{\psi _{{e}}}} \right) - v\sin \left( {{\psi _{{e}}}} \right)。$ | (6) |
在设计控制器时,为避免对虚拟控制律进行再求导带来的高计算复杂度,根据文献[16]引入时间常数为
令
$ {s_1} = {u_{ {e}}} + {\lambda _1}\int_0^{ {t}} {{u_{ {e}}}\left( \tau \right) } { {{\mathrm{d}}}}\tau,\quad {s_2} = {r_{ {e}}} + {\lambda _2}\int_0^{ {t}} {{r_{ {e}}}\left( \tau \right) } { {{\mathrm{d}}}}\tau, $ | (7) |
式中:
对式(7)中
${ {\begin{split} \begin{gathered} {{\dot s}_1} = \dot u - {{\dot \beta }_{ {u}}} + {\lambda _1}{u_{ {e}}} = \\ \frac{1}{{{m_{11}}}}\left( {{m_{22}}vr - {d_{11}}u - {f_{ {u}}}} \right) + \frac{{{\tau _{ {u}}} + {\tau _{{ {wu}}}}}}{{{m_{11}}}} - {{\dot \beta }_{ {u}}} + {\lambda _1}{u_{ {e}}} ,\end{gathered}\\ \begin{gathered}{{\dot s}_2} = \dot r - {{\dot \beta }_{ {r}}} + {\lambda _2}{r_{ {e}}} = \\ \frac{1}{{{m_{33}}}}\left( {\left( {{m_{11}} - {m_{22}}} \right)uv - {d_{33}}r - {f_{ {r}}}} \right) + \frac{{{\tau _{ {r}}} + {\tau _{{ {wr}}}}}}{{{m_{33}}}} - {{\dot \beta }_r} + {\lambda _2}{r_{ {e}}} 。\\ \end{gathered} \end{split}}}$ | (8) |
式中:
由RBF神经网络的逼近性质,未知项神经网络输出为:
$ \begin{gathered} {{\hat f}_{ {u}}} = {{\hat W}_{ {u}}}^{ {{\mathrm{T}}}}h\left( Z \right) + {\delta _1},\quad {{\hat f}_{ {r}}} = {{\hat W}_{ {r}}}^{ {{\mathrm{T}}}}h\left( Z \right) + {\delta _2}。\\ \end{gathered} $ | (9) |
式中:
自适应滑模控制律设计为:
$ \left\{ {\begin{split} &{\tau _{{ {u}}0}} = - {m_{22}}vr + {d_{11}}u + {{\hat W}_{ {u}}}^{ {{\mathrm{T}}}}h\left( Z \right) + {m_{11}}{{\dot \beta }_{ {u}}} - \\ &\qquad {\lambda _1}{m_{11}}{u_{ {e}}} - {\eta _1}{s_1} - \hat \tau _{{ {wu}}}^*\tanh \left( {{s_1}/{\varepsilon _1}} \right),\\ & {\tau _{{ {r}}0}} = - \left( {{m_{11}} - {m_{22}}} \right)uv + {d_{33}}r + {{\hat W}_r}^{ {{\mathrm{T}}}}h\left( Z \right) + {m_{33}}{{\dot \beta }_r} - \\ &\qquad {\lambda _2}{m_{33}}{r_{ {e}}} - {\eta _2}{s_2} - \hat \tau _{{ {wr}}}^*\tanh \left( {{s_2}/{\varepsilon _2}} \right) 。\end{split}} \right. $ | (10) |
式中:
设计权值自适应律为:
$ \begin{gathered} {{\dot {\hat W}}_{ {u}}} = - \left( {{s_1}h\left( Z \right) + {\varpi _1}{{\hat W}_{ {u}}}} \right)/{\vartheta _1},\\ {{\dot {\hat W}}_{ {r}}} = - \left( {{s_2}h\left( Z \right) + {\varpi _2}{{\hat W}_{ {r}}}} \right)/{\vartheta _2}。\\ \end{gathered} $ | (11) |
式中:
设计参数自适应律为:
$ \begin{gathered} \dot {\hat \tau} _{{ {wu}}}^* = - \left( {{s_1}\tanh \left( {{s_1}/{\varepsilon _1}} \right) - {\sigma _1}\left( {{\hat \tau} _{{ {wu}}}^* - \tau _{{ {wu}}}^0} \right)} \right)/{\gamma _1},\\ \dot {\hat \tau} _{{ {wr}}}^* = - \left( {{s_2}\tanh \left( {{s_2}/{\varepsilon _2}} \right) - {\sigma _2}\left( {{\hat \tau} _{{ {wr}}}^* - \tau _{{ {wr}}}^0} \right)} \right)/{\gamma _2}。\\ \end{gathered} $ | (12) |
式中:
为了解决事件触发时间间隔内的不稳定因素,设计事件触发控制器为:
$ \left\{ {\begin{split} {{\tau _{{ {us}}}} = {\tau _{{ {u0}}}} - {T_1}\tanh \left( {{T_1}{s_1}/{\varsigma _1}} \right)},\\ {{\tau _{{ {rs}}}} = {\tau _{{ {r0}}}} - {T_2}\tanh \left( {{T_2}{s_2}/{\varsigma _2}} \right)} 。\end{split}} \right. $ | (13) |
式中:
事件触发条件设计为:
$ {t}_{ {k}}=\mathrm{min}\left\{t\ge {t}_{ {k}-1}:\left(\Vert {e}_{{\tau }_{ {u}}}\Vert \geqslant {T}_{1}\right)\parallel \left(\Vert {e}_{{\tau }_{ {r}}}\Vert \geqslant {T}_{2}\right)\right\} {,}{t}_{0}=0,$ | (14) |
其中,
定义的控制器比较误差
$ \left \{\begin{array}{c}{e}_{{\tau }_{ {u}}}={\tau }_{ {us}}\left(t\right)-{\tau }_{ {u}}\left(t\right),\\ {e}_{{\tau }_{ {r}}}={\tau }_{ {rs}}\left(t\right)-{\tau }_{ {r}}\left(t\right),\end{array} t\in \left[{t}_{ {k}},{t}_{ {k}+1}\right)。\right. $ | (15) |
可知,控制器在某一触发时刻
构造如下Lyapunov函数:
$ V = \frac{1}{2}{\left( {{z_{ {e}}} - {\zeta _{xy}}} \right)^2} + \frac{1}{2}{\psi _e}^2 + \frac{1}{2}{y_{ {u}}}^2 + \frac{1}{2}{y_{ {r}}}^2。$ | (16) |
对式(16)求导,将式(3)~式(6)代入并化简得:
$ \dot V \leqslant - 2aV + {u_{ {e}}}\cos {\psi _{ {e}}}\left( {{z_{ {e}}} - {\zeta _{xy}}} \right) + {r_{ {e}}}{\psi _{ {e}}} + b 。$ | (17) |
式中:
由式(17)可知,当
构造如下Lyapunov函数:
$\begin{aligned} V= & \frac{1}{2}m_{11}s_{1}^{2}+\frac{1}{2}m_{33}s_{2}^{2}+\frac{1}{2}\gamma_{1}\tilde{\tau}_{{wu}}^{*}{}^{2}+ \\ & \frac{1}{2}\gamma_{2}\bar{\tau}_{{wr}}^{*}{}^{2}+\frac{1}{2}\vartheta_{1}\bar{W}_{{u}}^{\mathrm{T}}\bar{W}_{{u}}+\frac{1}{2}\vartheta_{2}\bar{W}_{{r}}^{\mathrm{T}}\bar{W}_{{r}}。\end{aligned}$ | (18) |
式中:
由式(15)代入式(14)并化简得:
$ \left\{ {\begin{array}{*{20}{c}} {{\tau _{ {u}}}\left( t \right) = {\tau _{{ {us}}}}\left( t \right) - {T_1}{\ell _1}\left( t \right)},\\ {{\tau _{ {r}}}\left( t \right) = {\tau _{{ {rs}}}}\left( t \right) - {T_2}{\ell _2}\left( t \right)} 。\end{array}} \right. $ | (19) |
对式(18)求导,并将式(8)、式(10)~式(13)、式(19)代入并化简得:
$ \begin{gathered} \dot V \leqslant - {\eta _1}s_1^2 - {\eta _2}s_2^2 + 0.2785{\varepsilon _1}\tau _{{ {wu}}}^* + 0.2785{\varepsilon _1}\tau _{{ {wr}}}^* + \\ 0.2785{\varsigma _1} + 0.2785{\varsigma _2} + \frac{{\delta _{ {U}}^2}}{2} + \frac{{s_1^2}}{2} + \frac{{\delta _{ {R}}^2}}{2} + \frac{{s_2^2}}{2} + \\ \frac{{{{\left( {{T_1}{\ell _1}\left( t \right)} \right)}_{ {U}}}^2}}{2} + \frac{{s_1^2}}{2} + \frac{{{{\left( {{T_2}{\ell _2}\left( t \right)} \right)}_{ {R}}}^2}}{2} + \frac{{s_2^2}}{2} - \frac{{{\sigma _1}}}{2}{\left( {\hat \tau _{{ {wu}}}^* - \tau _{{ {wu}}}^*} \right)^2} + \\ \frac{{{\sigma _1}}}{2}{\left( {\tau _{{ {wu}}}^* - \tau _{{ {wu}}}^0} \right)^2} - \frac{{{\sigma _2}}}{2}{\left( {\hat \tau _{{ {wr}}}^* - \tau _{{ {wr}}}^*} \right)^2} + \frac{{{\sigma _2}}}{2}{\left( {\tau _{{ {wr}}}^* - \tau _{{ {wr}}}^0} \right)^2} - \end{gathered} $ |
$ \begin{gathered} \frac{{{\varpi _1}}}{2}W_{ {u}}^{ {{\mathrm{T}}}}{{\tilde W}_{ {u}}} + \frac{{{\varpi _1}}}{2}{W_{ {u}}}^2 - \frac{{{\varpi _2}}}{2}W_{ {r}}^{ {{\mathrm{T}}}}{{\tilde W}_{ {r}}} + \frac{{{\varpi _2}}}{2}{W_{ {r}}}^2 = \\ - \left( {{\eta _1} - 1} \right)s_1^2 - \left( {{\eta _2} - 1} \right)s_2^2 + 0.2785{\varepsilon _1}\tau _{{ {wu}}}^* + 0.2785{\varepsilon _2}\tau _{{ {wr}}}^* + \\ 0.2785{\varsigma _1} + 0.2785{\varsigma _2} + \frac{{\delta _{ {U}}^2}}{2} + \frac{{s_1^2}}{2} + \frac{{\delta _{ {R}}^2}}{2} + \frac{{s_2^2}}{2} + \\ \frac{{{{\left( {{T_1}{\ell _1}\left( t \right)} \right)}_{ {U}}}^2}}{2} + \frac{{s_1^2}}{2} + \frac{{{{\left( {{T_2}{\ell _2}\left( t \right)} \right)}_{ {R}}}^2}}{2} + \frac{{s_2^2}}{2} - \frac{{{\sigma _1}}}{2}{\left( {\hat \tau _{{ {wu}}}^* - \tau _{{ {wu}}}^*} \right)^2} + \\ \frac{{{\sigma _1}}}{2}{\left( {\tau _{{ {wu}}}^* - \tau _{{ {wu}}}^0} \right)^2} - \frac{{{\varpi _1}}}{2}W_{ {u}}^{ {{\mathrm{T}}}}{{\tilde W}_{ {u}}} - \frac{{{\varpi _2}}}{2}W_{ {r}}^{ {{\mathrm{T}}}}\tilde W + \frac{{{\varpi _1}}}{2}{W_{ {U}}}^2 + \\ \frac{{{\varpi _2}}}{2}{W_{ {R}}}^2 + \frac{{\delta _{ {U}}^2}}{2} + \frac{{\delta _{ {R}}^2}}{2} + \frac{{{{\left( {{T_1}{\ell _1}\left( t \right)} \right)}_{ {U}}}^2}}{2} + \frac{{{{\left( {{T_2}{\ell _2}\left( t \right)} \right)}_{ {R}}}^2}}{2} \\ \leqslant - {\mu _1}V + {C_1} ,\\[-8pt] \end{gathered} $ | (20) |
$ \begin{gathered}式中:{\mu _1} = \min \left( {{\eta _1} - 1,{\eta _2} - 1,{\sigma _1},{\sigma _2},{\varpi _1},{\varpi _2}} \right) ,\\ {C_1} = 0.2785{\varepsilon _1}\tau _{{ {wu}}}^* + 0.2785{\varepsilon _2}\tau _{{ {wr}}}^* + 0.2785{\varsigma _1} \\ 0.2785{\varsigma _2} + \frac{{{\sigma _1}}}{2}{\left( {\tau _{{ {wu}}}^* - \tau _{{ {wu}}}^0} \right)^2} + \\ \frac{{{\sigma _2}}}{2}{\left( {\tau _{{ {wr}}}^* - \tau _{{ {wr}}}^0} \right)^2} + \frac{{\delta _{ {U}}^2}}{2} + \frac{{\delta _{ {R}}^2}}{2} + \frac{{{\varpi _1}}}{2}{W_{ {U}}}^2 + \\ \frac{{{\varpi _2}}}{2}{W_{ {R}}}^2 + \frac{{{{\left( {{T_1}{\ell _1}\left( t \right)} \right)}_{ {U}}}^2}}{2} + \frac{{{{\left( {{T_2}{\ell _2}\left( t \right)} \right)}_{ {R}}}^2}}{2} 。\\ \end{gathered} $ | (21) |
由式(21)可得:
$ 0 \leqslant V\left( t \right) \leqslant \frac{{{C_1}}}{{{\mu _1}}} + \left[ {V\left( 0 \right) - \frac{{{C_1}}}{{{\mu _1}}}} \right]{{ {e}}^{ - {\mu _1}t}}。$ | (22) |
可知,
定义事件触发时间间隔为
$ \left\{ {\begin{array}{*{20}{c}} {\left\| {{\tau _{{ {us}}}}\left( {{t_{{ {k}} + 1}}} \right) - {\tau _{ {u}}}\left( {{t_{ {k}}}} \right)} \right\| \geqslant {T_1}},\\ {\left\| {{\tau _{{ {rs}}}}\left( {{t_{{ {k}} + 1}}} \right) - {\tau _{ {r}}}\left( {{t_{ {k}}}} \right)} \right\| \geqslant {T_2}}。\end{array}} \right. $ | (23) |
对式(13)求导有:
$ \left\{ {\begin{array}{*{20}{c}} {{{\dot \tau }_{{ {us}}}} = {\tau _{{ {u0}}}} - \displaystyle\frac{{{T_1}{{\dot s}_1}}}{{{{\cosh }^2}\left( {{T_1}{{\dot s}_1}/{\varsigma _1}} \right)}}},\\ {{{\dot \tau }_{{ {rs}}}} = {\tau _{{ {r0}}}} - \displaystyle\frac{{{T_2}{{\dot s}_2}}}{{{{\cosh }^2}\left( {{T_2}{{\dot s}_2}/{\varsigma _2}} \right)}}} 。\end{array}} \right. $ | (24) |
则有:
$ \left\{ {\begin{split}& {\left\| {{{\dot \tau }_{{ {us}}}}} \right\| \leqslant {{\bar T}_1}},\\ & {\left\| {{{\dot \tau }_{{ {rs}}}}} \right\| \leqslant {{\bar T}_2}}。\end{split}} \right. $ | (25) |
其中,
则有:
$ \tau =\mathrm{min}\left(\frac{\Vert {\tau }_{ {us}}\left({t}_{ {k}+1}\right)-{\tau }_{ {u}}\left({t}_{ {k}}\right)\Vert }{\Vert {\dot{\tau }}_{ {us}}\Vert } {,}\frac{\Vert {\tau }_{ {rs}}\left({t}_{ {k}+1}\right)-{\tau }_{ {r}}\left({t}_{ {k}}\right)\Vert }{\Vert {\dot{\tau }}_{ {rs}}\Vert }\right)。$ | (26) |
因此,事件触发序列
$ {t}_{ {k}+1}-{t}_{ {k}}\ge \tau =\mathrm{min}\left(\frac{{T}_{1}}{{\overline{T}}_{1}},\frac{{T}_{2}}{{\overline{T}}_{2}}\right)>0。$ | (27) |
可知,事件触发时间间隔大于0,能够避免Zeno现象的发生。
4 仿真分析采用文献[17]船舶为仿真对象,船长为38 m,质量为118×103 kg,船舶系统惯性参数
![]() |
表 1 船舶轨迹跟踪控制参数 Tab.1 Ship trajectory tracking control parameters |
仿真结果如图1~图7所示。图1为船舶轨迹跟踪曲线,可知,控制器能够克服外界环境干扰跟踪参考轨迹,跟踪效果、响应速度均优于传统滑模控制;图2为船舶轨迹跟踪的误差曲线,可知传统滑模轨迹跟踪的误差曲线出现明显波动,本文设计的事件触发控制器能够更好地跟踪控制,误差波动被有效抑制。
![]() |
图 1 船舶轨迹跟踪曲线 Fig. 1 Ship track tracking curve |
![]() |
图 7
控制器 |
![]() |
图 2 船舶轨迹跟踪位置误差 Fig. 2 Ship trajectory tracking position error |
图3为欠驱动船舶在3个自由度上的位置变化曲线,能够更直观反应船舶在不同自由度上的运动特性和控制效果;图4为船舶轨迹跟踪控制输入曲线;图5为RBF神经网络逼近船舶模型参数不确定部分的变化曲线,可以看出,神经网络具有良好的逼近性,能够有效估计不确定部分的上界。
![]() |
图 3 船舶轨迹位置跟踪和首摇角曲线 Fig. 3 Ship trajectory position tracking and bow roll angle curve |
![]() |
图 4 船舶轨迹控制输入曲线 Fig. 4 Ship trajectory control input curve |
![]() |
图 5 船舶轨迹神经网络逼近曲线 Fig. 5 Ship trajectory neural network approximates curves |
图6和图7为控制器
![]() |
图 6
控制器 |
本文提出一种基于事件触发的自适应滑模控制算法。在RBF神经网络滑模控制的基础上,设计事件触发条件,通过控制信号与触发信号差值来保证事件触发间隔大于0,有效避免了Zeno现象。通过理论推导证明了算法的鲁棒性、快速性和稳定性。仿真结果显示,控制器能够保持精确轨迹跟踪,并且更新次数减少约
[1] |
FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transactions on Control Systems Technology, 2014, 23(2): 820-827. |
[2] |
张强, 朱雅萍, 孟祥飞等. 欠驱动船舶自适应神经网络有限时间轨迹跟踪[J]. 中国舰船研究, 2022, 17((4): 24-31. ZHANG Q, ZHU Y P, MENG X F, et al. H T. Finite time trajectory tracking of underactuated ships using adaptive neural networks[J]. Chinese Journal of Ship Research, 2022, 17((4): 24-31. |
[3] |
YANG Y, DU J, LIU H, et al. A trajectory tracking robust controller of surface vessels with disturbance uncertainties[J]. IEEE Transactions on Control Systems Technology, 2013, 22(4): 1511-1518. |
[4] |
ZHANG R, CHEN Y, SUN Z, et al. Path control of a surface ship in restricted waters using sliding mode[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 722-732. DOI:10.1109/87.852916 |
[5] |
张晓玲, 沈智鹏, 毕艳楠. 带扰动观测器的船舶轨迹跟踪自适应动态面滑模控制[J]. 船舶工程, 2018, 40((7): 81-87. ZHANG X L, SHEN Z P, BI Y N. Adaptive dynamic surface sliding mode control for ship trajectory tracking with disturbance observer[J]. Ship Engineering, 2018, 40((7): 81-87. |
[6] |
沈智鹏, 毕艳楠, 郭坦坦, 等. 带非线性观测器的欠驱动船舶自适应动态面输出反馈轨迹跟踪控制[J]. 系统工程与电子技术, 2019, 41((2): 409-416. SHENG Z P, BI Y N, GUO T T, et al. Adaptive dynamic surface output feedback trajectory tracking control for underactuated ship with nonlinear observer[J]. Systems Engineering and Electronics, 2019, 41((2): 409-416. |
[7] |
LI H, LIN X. Robust finite-time fault-tolerant control for dynamic positioning of ships via nonsingular fast integral terminal sliding mode control[J]. Applied Ocean Research, 2022, 122: 103126. DOI:10.1016/j.apor.2022.103126 |
[8] |
HEEMELS W P M H, JOHANSSON K H, TABUADA P. An introduction to event-triggered and self-triggered control[C]//2012 ieee 51st IEEE conference on Decision and Control (cdc). IEEE, 2012: 3270-3285.
|
[9] |
ZHANG G, YAO M, XU J, et al. Robust neural event-triggered control for dynamic positioning ships with actuator faults[J]. Ocean Engineering, 2020, 207: 107292. DOI:10.1016/j.oceaneng.2020.107292 |
[10] |
刘训文, 徐超, 陈再发. 事件触发的自适应PID海洋水面船舶航迹跟踪控制[J]. 上海海事大学学报, 2023, 44((2): 11-17. LIU X W, XU C, CHEN Z F. Event-triggered adaptive PID Marine surface ship track tracking control[J]. Journal of Shanghai Maritime University, 2023, 44((2): 11-17. |
[11] |
DENG Y J, ZHANG X J, ZHAO B, et al. Event-triggered compound learning tracking control of autonomous surface vessels in the measurement network[J]. Ocean Engineering, 2021, 228: 108817. DOI:10.1016/j.oceaneng.2021.108817 |
[12] |
李国进, 李晨曦, 易泽仁. 基于事件触发的船舶航向逻辑切换自适应控制[J]. 舰船科学技术, 2022, 44(11): 76-81. LI G J, LI C X, YI Z R. Adaptive control of ship course logic switching based on event triggering[J]. Ship Science and Technology, 2022, 44(11): 76-81. DOI:10.3404/j.issn.1672-7649.2022.11.016 |
[13] |
HUA C, CHAO S, JIA H. Event-triggered model-free adaptive control for a class of surface vessels with time-delay and external disturbance via state observer[J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 783-797. DOI:10.23919/JSEE.2023.000075 |
[14] |
FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.
|
[15] |
SUI J H, ZHANG H. Neural network sliding mode path following control based on the DVS algorithm of underactuated ships[C]//2019 Chinese Control and Decision Conference (CCDC). IEEE, 2019: 2166-2171.
|
[16] |
ZHANG G Q, DENG Y J, ZHANG W. Robust neural path-following control for underactuated ships with the DVS obstacles avoidance guidance[J]. Ocean Engineering, 2017, 143(10): 198-208. |
[17] |
DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929-944. DOI:10.1016/j.automatica.2004.01.021 |