宽带共形阵在不改变设备外形的前提下实现阵元布局的优化配置,有效提高阵增益,在声呐、雷达和通信等领域的阵列信号处理中得到越来越广泛应用。针对采用节拍延迟线(Tapped Delay Line,TDL)结构和复数加权的宽带共形阵,本文提出的自适应频率不变波束形成器(Frequency Invariant Beamformer,FIB)对宽带入射信号在不同频率上具有基本一致的幅度和相位响应,有效降低宽带波束形成器输出端期望信号的失真[1],并且可以实现对非期望信号方向上干扰信号的高效抑制。
Liu等[2]将最小方差无偏响应 (Minimum Variance Distortionless Response,MVDR)波束形成器转化为对应的标准二阶锥规划(Second Order Cone Programming,SOCP)描述,Strun等[3]提出的内点方法(Interior-point Method)对该SOCP描述进行有效求解,实现适用于均匀线列阵的旁瓣约束波束形成器设计。Chen等[4]提出适用于任意结构宽带线列阵的自适应波束形成器设计方法,但该方法仅适用于线列阵波束设计。Duan等[5]提出将空间响应偏差SRV(Spatial Response Variation)约束应用于宽带阵列FIB设计,但适用范围限定于采用实数加权系数的阵列,导致其性能和应用范围受到一定限制。Chen等[6]提出的宽带波束形成器设计方法对文献[5]方法进行改进,应用范围扩展到复数加权阵列,但该方法仅适用于宽带线列阵的非自适应FIB设计,无法高效抑制宽带干扰信号。Lucas[7]根据最小平方最优变换准则构建宽带波束形成器设计,但无法保持宽带波束图在不同频率上的恒定特性。丛雯珊等[8]提出基于粒子群算法的宽带阵列波束综合设计,但适用范围限制为大阵元间距的宽带平面阵。王华奎[9]提出基于二阶锥规划的宽带平面阵近场波束优化方法,但该方法无法用于对宽带平面阵远场波束设计。陈鹏等[10]提出根据在参考频率上预测信号方向无偏响应约束、在参考频率上旁瓣区域旁瓣级约束以及平均空间响应偏差幅度约束这3个条件下最小化波束形成器输出功率的准则进行自适应FIB设计,但该方法适用范围为宽带平面阵,并且由于约束条件较多导致优化计算的复杂度增加。
针对采用节拍延迟线(Tapped Delay Line,TDL)结构和复数加权系数的宽带共形阵,本文提出基于SRV约束的自适应FIB设计。该自适应FIB在参考频率上保持预测信号方向无偏响应以及旁瓣级恒定这2个限制条件下,根据对波束形成器输出功率值与平均空间响应偏差值这2项的加权和进行最小化处理的准则进行设计。本文方法将自适应FIB设计应用扩展到宽带共形阵波束优化,并且通过对约束条件和目标函数的合理调整,降低优化计算复杂度。通过数学变换将这种FIB设计问题转化为标准SOCP形式后,可以采用内点方法对其进行有效求解。仿真结果验证了本文方法对于宽带共形阵自适应FIB设计的有效性。
为简化描述,本文后续采用的部分符号定义为:
对于采用
$ {x_n}(t) = \sum\limits_{i = 0}^I {{s_i}(t + {\tau _n}({\theta _i},{\gamma _i}){T_s})} + {v_n}(t),n = 1,...,N 。$ | (1) |
式中:
$ {\tau _n}({\theta _i},{\gamma _i}) = [({\alpha _n}\cos {\gamma _i}\sin {\theta _i} + {\beta _n}\sin {\gamma _i} + {\lambda _n}\cos {\gamma _i}\cos {\theta _i})/c]/{T_s}。$ | (2) |
为简化后续计算表达式,定义如下整数变量
$ g = ({i_1} - 1)N + {k_1}, {i_1} = 1,2 ,...,M, {k_1} = 1,2 ,...,N,$ | (3) |
$ h = ({i_2} - 1)N + {k_2}, {i_2} = 1,2 ,...,M, {k_2} = 1,2 ,...,N,$ | (4) |
$ {\zeta _g}(\theta ,\gamma ) = {\tau _{{k_1}}}(\theta ,\gamma ) - ({i_1} - 1),{i_1} = 1,2 ,...,M, {k_1} = 1,2 ,...,N,$ | (5) |
$ {\zeta _h}(\theta ,\gamma ) = {\tau _{{k_{ 2}}}}(\theta ,\gamma ) - ({i_2} - 1), {i_2} = 1,2 ,...,M, {k_2} = 1,2 ,...,N ,$ | (6) |
$ {\xi _{g, h}}(\theta ,\gamma ) = {\zeta _g}(\theta ,\gamma ) - {\zeta _h}(\theta ,\gamma ),$ | (7) |
本文中入射信号
$ \begin{aligned}[b] {x_{n, m}}(k) &= {x_n}(t - (m - 1){T_s}){|_{ t = k{T_s}}},n = 1,...,N;\\ m &= 1,...,M;k = 1,...,K 。\end{aligned}$ | (8) |
式中,
$\begin{aligned}[b] {\boldsymbol{x}}(k) = &[{x_{1, 1}}(k),{x_{2, 1}}(k),...,{x_{N, 1}}(k),{x_{1, 2}}(k),{x_{2, 2}}(k),...,\\ &{x_{N, 2}}(k),...,{x_{1, M}}(k),{x_{2, M}}(k),...,{x_{N, M}}(k)]^{\mathrm{T}},\end{aligned} $ | (9) |
$\begin{aligned}[b] {\boldsymbol{w}} = &[{w_{1, 1}}, {w_{2, 1}},..., {w_{N, 1}}, {w_{1, 2}}, {w_{2, 2}}, ..., {w_{N, 2}},..., \\ &{w_{1, M}}, {w_{2, M}},..., {w_{N, M}}]^{\mathrm{T}},\end{aligned} $ | (10) |
$ {\boldsymbol{a}}(f,\theta ,\gamma ) = {{\boldsymbol{a}}_M}(f) \otimes {{\boldsymbol{a}}_N}(f,\theta ,\gamma )。$ | (11) |
其中,
$ {{\boldsymbol{a}}_M}(f) = {[1, {e^{ - j2{\text π} f}},...,{e^{ - j2{\text π} f(M - 1)}}]^{\mathrm{T}}},$ | (12) |
$ {{\boldsymbol{a}}_N}(f,\theta ,\gamma ) = {[{e^{j2{\text π} f{\tau _{ 1}}(\theta ,\gamma )}},{e^{j2{\text π} f{\tau _{ 2}}(\theta ,\gamma )}},...,{e^{j2{\text π} f{\tau _{ N}}(\theta ,\gamma )}}]^{\mathrm{T}}}。$ | (13) |
根据上述表达式,可以获得宽带共形阵的波束图函数
$ b(f,\theta ,\gamma ) = {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{a}}(f,\theta ,\gamma ) = {{\boldsymbol{a}}^{\mathrm{T}}}(f,\theta ,\gamma ){\boldsymbol{w}},$ | (14) |
$ z(k) = \sum\limits_{n = 1}^N {\sum\limits_{m = 1}^M {{w_{n, m}}{x_{n, m}}(k)} } = {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{x}}(k),$ | (15) |
$ {P_z} = E[z(k){z^H}(k)] = E[{{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{x}}(k){{\boldsymbol{x}}^H}(k){{\boldsymbol{w}}^*}] = {{\boldsymbol{w}}^{\mathrm{T}}}{{\boldsymbol{R}}_x}{{\boldsymbol{w}}^*}。$ | (16) |
对应节拍堆积向量
$ \boldsymbol{R}_x=E[\boldsymbol{x}(k)\boldsymbol{x}^{\mathrm{H}}(k)]=\sum\limits_{i=0}^I\boldsymbol{R}_i+\boldsymbol{R}_v,$ | (17) |
其中,
$ \boldsymbol{R}_i=\int_{f_L}^{f_U}S_i(f)\boldsymbol{a}(f,\theta_i,\gamma_i)\boldsymbol{a}^{\mathrm{H}}(f,\theta_i,\gamma_i)\mathrm{d}f。$ | (18) |
结合表达式(3)~式(7)的定义,对
$ {[{{\boldsymbol{R}}_i}]_{g, h}} = \sigma _i^2{e^{j2{\text π} {f_r}{\xi _{g, h}}({\theta _i},{\gamma _i})}}{{\mathrm{sin}c}} ({\xi _{g, h}}({\theta _i},{\gamma _i})B)。$ | (19) |
其中,
$ {[{{\boldsymbol{R}}_v}]_{g, h}} = \left\{ {\begin{array}{*{20}{l}} {\sigma _v^2{e^{-j2{\text π} {f_r}({i_1} - {i_2})}}{\mathrm{sin}c} (-({i_1} - {i_2})B),{k_1} = {k_2}} ,\\ {0,{k_1} \ne {k_2} } 。\end{array}} \right. $ | (20) |
对于宽带共形阵单个阵元输入信号
$ {{{{SINR}}} _\mathrm{input}} = \frac{{\sigma _0^2}}{{\displaystyle\sum\limits_{i = 1}^I {\sigma _i^2 + \sigma _v^2} }}。$ | (21) |
对于宽带共形阵波束输出信号
$ {{{{SINR}}} _\mathrm{output}} = \frac{{{{\boldsymbol{w}}^{\mathrm{T}}}{{\boldsymbol{R}}_0}{{\boldsymbol{w}}^*}}}{{{{\boldsymbol{w}}^{\mathrm{T}}}\left(\displaystyle\sum\limits_{i = 1}^I {{{\boldsymbol{R}}_i} + } {{\boldsymbol{R}}_v}\right){{\boldsymbol{w}}^*}}}。$ | (22) |
以上对输入信号及输出信号信干噪比的计算用于对波束形成器的性能进行评估。在自适应波束设计中,宽带共形阵空间协方差矩阵
$ \widehat {{\boldsymbol{R}}_x} = \frac{1}{K}\sum\limits_{k = 1}^K {\boldsymbol{x}}(k){\boldsymbol{x}}^{\rm{H}}(k)。$ | (23) |
空间响应偏差函数
$ \begin{aligned}[b] SRV(\theta ,\gamma ) =& \frac{1}{B}\int_{{f_L}}^{{f_U}} {|b(f,\theta ,\gamma ) - b({f_r},\theta ,\gamma ){|^2}{\mathrm{d}}f} = \\ & \frac{1}{B}\int_{{f_L}}^{{f_U}} {|{{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{a}}(f,\theta ,\gamma ) - {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{a}}({f_r},\theta ,\gamma ){|^2}{\mathrm{d}}f} = \\ & {{\boldsymbol{w}}^{\mathrm{T}}}\frac{1}{B}\int_{{f_L}}^{{f_U}} {|{\boldsymbol{a}}(f,\theta ,\gamma ) - {\boldsymbol{a}}({f_r},\theta ,\gamma ){|^2}{\mathrm{d}}f} {{\boldsymbol{w}}^*} = \\ & {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{J}}(\theta ,\gamma ){{\boldsymbol{w}}^*}。\end{aligned} $ | (24) |
其中,
$\begin{aligned}[b] {[{\boldsymbol{J}}(\theta ,\gamma )]_{g, h}} &= {[{{\boldsymbol{J}}_1}(\theta ,\gamma )]_{g,h}} - {[{{\boldsymbol{J}}_2}(\theta ,\gamma )]_{g,h}} - \\ {[{{\boldsymbol{J}}_3}(\theta ,\gamma )]_{g,h}} &+ {[{{\boldsymbol{J}}_4}(\theta ,\gamma )]_{g,h}}。\end{aligned} $ | (25) |
其中,
$ {[{{\boldsymbol{J}}_1}(\theta ,\gamma )]_{g,h}} = \frac{1}{B}\int_{{f_L}}^{{f_U}} {{e^{j2{\text π} f{\xi _{g, h}}(\theta ,\gamma )}}{\mathrm{d}}f},$ | (26) |
$ {[{{\boldsymbol{J}}_2}(\theta ,\gamma )]_{g, h}} = \frac{{{e^{ - j2{\text π} {f_r}{\zeta _{ h}}(\theta , \gamma )}}}}{B}\int_{{f_L}}^{{f_U}} {{e^{j2{\text π} f{\zeta _g}(\theta , \gamma )}}{\mathrm{d}}f},$ | (27) |
$ {[{{\boldsymbol{J}}_3}(\theta ,\gamma )]_{g, h}} = \frac{{{e^{j2{\text π} {f_r}{\zeta _g}(\theta ,\gamma )}}}}{B}\int_{{f_L}}^{{f_U}} {{e^{ - j2{\text π} f{\zeta _h}(\theta ,\gamma )}}{\mathrm{d}}f },$ | (28) |
$ {[{{\boldsymbol{J}}_4}(\theta ,\gamma )]_{g, h}} = {e^{j2{\text π} {f_r}{\xi _{g, h}}(\theta ,\gamma )}} 。$ | (29) |
使用SRV约束可以有效抑制宽带共形阵在不同工作频率上波束图与参考频率上波束图之间的偏差幅度。为满足自适应FIB在不同工作频率上波束图函数
$ \overline {SRV} = (1/D)\sum\nolimits_{ d = 1}^D {SRV({\phi _d},{\varphi _d})} = {{\boldsymbol{w}}^{\mathrm{T}}}\overline {\boldsymbol{J}} {{\boldsymbol{w}}^*},$ | (30) |
其中,
$ \overline {\boldsymbol{J}} = (1/D) \sum\nolimits_{d = 1}^D {{\boldsymbol{J}}({\phi _d},{\varphi _d})}。$ | (31) |
凸锥优化(Convex Conic Optimization)问题的标准表达式如下:
$ \mathop {\max }\limits_{\boldsymbol{y}} {{\boldsymbol{b}}^{\mathrm{T}}}{\mathbf{y}} subject to {\mathbf{c}} - {{\boldsymbol{A}}^{\mathrm{T}}}{\boldsymbol{y}} \in \kappa,$ | (32) |
式中:
$ {{{\mathrm{SOC}}} ^{r + 1}}=\left\{\left[ {\begin{array}{*{20}{c}} \mu \\ {\bf{\text{μ} }} \end{array}} \right] \in \Re \times {{\boldsymbol{G}}^r}|\mu \geqslant ||{\text{μ} }|| \right\}。$ | (33) |
其中,
$ \{ 0\} = \{ \mu \in {\boldsymbol{G}}|\mu = 0\},$ | (34) |
其中,
本文提出的宽带共形阵自适应FIB属于数据相关的波束形成器,优化计算的复数加权系数向量
$ \begin{aligned}[b] &\underset{w}{\mathrm{min}}\delta subjectto\\ &\boldsymbol{w}^{{\mathrm{T}}}\boldsymbol a({f}_{0},{\vartheta }_{0},{\psi }_{0})=\\ &1,|\boldsymbol{w}^{{\mathrm{T}}}\boldsymbol a({f}_{0},{\vartheta }_{p},{\psi }_{q})|\leqslant \varsigma ,\boldsymbol{w}^{{\mathrm{T}}}({\widehat{\boldsymbol R}}_{x}+\epsilon \overline{\boldsymbol J})\boldsymbol{w}^{*}\leqslant \delta \\ &{\vartheta }_{p}\in [-{90}^{\circ},{\vartheta }_{0}-{\varOmega}/2]\cup [{\vartheta }_{0}+{\varOmega}/2,{90}^{\circ}],\\ &{\psi }_{q}\in [-{90}^{\circ},{\psi }_{0}-{\varOmega}/2]\cup [{\psi }_{0}+{\varOmega} /2,{90}^{\circ}],\\ &p=1,2, ... ,P;q=1,2, ... ,Q。\end{aligned} $ | (35) |
式中:(
$ \boldsymbol{R}=\boldsymbol{U\Lambda U}_{ }^{\mathrm{H}}。$ | (36) |
其中,
$ \begin{aligned}[b] {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{R}}{{\boldsymbol{w}}^*} = & {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{U \varLambda U}}_{}^{\mathrm{H}}{{\boldsymbol{w}}^*} = {{\boldsymbol{w}}^{\mathrm{T}}}{\boldsymbol{U}}{({\boldsymbol{ \varLambda }}_{}^{0.5})^{\mathrm{H}}}{\boldsymbol{ \varLambda }}_{}^{0.5}{\boldsymbol{U}}_{}^{\mathrm{H}}{{\boldsymbol{w}}^*} =\\ & {({\boldsymbol{ \varLambda }}_{}^{0.5}{\boldsymbol{U}}_{}^{\mathrm{H}}{{\boldsymbol{w}}^*})^{\mathrm{H}}}({\boldsymbol{ \varLambda }}_{}^{0.5}{\boldsymbol{U}}_{}^{\mathrm{H}}{{\boldsymbol{w}}^*}) = ||{\boldsymbol{L}}_{}^{\mathrm{H}}{{\boldsymbol{w}}^*}|{|^2} 。\end{aligned}$ | (37) |
其中,
$ {\boldsymbol{L}} = {\boldsymbol{U}}{({\boldsymbol{ \varLambda}}_{}^{0.5})^{\mathrm{H}}} = {\boldsymbol{U \varLambda}}_{}^{0.5}。$ | (38) |
为了应用二阶锥规划方法进行优化问题求解,表达式(35)还需要被进一步转化为实数形式。为此引入3个
$ {{\boldsymbol{a}}_{ 1}}(f,\theta ,\gamma ) = {[{{\mathrm{Re}}} {\{ {\boldsymbol{a}} (f,\theta ,\gamma )\} ^{\mathrm{T}}}, - {{\mathrm{Im}}} {\{ {\boldsymbol{a}} (f,\theta ,\gamma )\} ^{\mathrm{T}}}]^{\mathrm{T}}},$ | (39) |
$ {{\boldsymbol{a}}_{ 2}}(f,\theta ,\gamma ) = {[{{\mathrm{Im}}} {\{ {\boldsymbol{a}} (f,\theta ,\gamma )\} ^{\mathrm{T}}},{{\mathrm{Re}}} {\{ {\boldsymbol{a}} (f,\theta ,\gamma )\} ^{\mathrm{T}}}]^{\mathrm{T}}},$ | (40) |
$ {{\boldsymbol{y}}_2} = {[{{\mathrm{Re}}} {\{ {\boldsymbol{w}}\} ^{\mathrm{T}}},{{\mathrm{Im}}} {\{ {\boldsymbol{w}}\} ^{\mathrm{T}}}]^{\mathrm{T}}},$ | (41) |
$ \widetilde {\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {{{\mathrm{Re}}} \{ {\boldsymbol{L}}_{}^H\} }&{{{\mathrm{Im}}} \{ {\boldsymbol{L}}_{}^H\} } \\ {{{\mathrm{Im}}} \{ {\boldsymbol{L}}_{}^H\} }&{ - {{\mathrm{Re}}} \{ {\boldsymbol{L}}_{}^H\} } \end{array}} \right]。$ | (42) |
定义2个
$ {\boldsymbol{b}} = {[ - 1,0,0,...,0]^{\mathrm{T}}},$ | (43) |
$ {\boldsymbol{y}} = {[{y_1},{\boldsymbol{y}}_2^{\mathrm{T}}]^{\mathrm{T}}},$ | (44) |
其中
$ {{\boldsymbol{b}}^{\mathrm{T}}}{\boldsymbol{y}} = - {y_1} = - \delta。$ | (45) |
对表达式(35)中的非负标量
$ \begin{split}||{\boldsymbol{L}}^{\mathrm{H}}{\boldsymbol{w}^*}|| =& ||{{\mathrm{Re}}} ({\boldsymbol{L}}^{\mathrm{H}}{\boldsymbol{w}^*}) + j{{\mathrm{Im}}} ({{\boldsymbol{L}}^{\mathrm{H}}}{\boldsymbol{w}^*})|| =\\ &\left\| {\begin{array}{*{20}{c}} {{\mathrm{Re}}} ({\boldsymbol{L}}^{\mathrm{H}}{\boldsymbol{w}^*}) \\ {{\mathrm{Im}}} ({\boldsymbol{L}}^{\mathrm{H}}{\boldsymbol{w}^*}) \end{array}} \right\| = \left\| {\widetilde {{\boldsymbol{L}}}} {{\boldsymbol{y}}_2} \right\| ,\end{split}$ | (46) |
$ \boldsymbol{a}^{\mathrm{T}}(f,\theta,\gamma)=\boldsymbol{a}_1^{\mathrm{T}}(f,\theta,\gamma)\boldsymbol{y}_2+j\boldsymbol{a}_2^{\mathrm{T}}(f,\theta,\gamma)\boldsymbol{y}_2。$ | (47) |
利用上述表达式,可以将描述波束形成器的表达式(35)转化为如下具有4个约束条件的标准二阶锥规划形式:
$ \begin{gathered} \mathop {\max }\limits_{\boldsymbol{y}} {{\boldsymbol{b}}^{\mathrm{T}}}{\boldsymbol{y}} subject to \\ 1)\, {\boldsymbol{a}}_{ 1}^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 1, {\boldsymbol{a}}_{ 2}^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 0; \\ 2)\, |{\boldsymbol{a}}_1^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2} + j {\boldsymbol{a}}_2^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2}| \leqslant \varsigma ; \\ 3)\, ||\widetilde {\boldsymbol{L}}{{\boldsymbol{y}}_2}|| \leqslant {y_1}; \\ {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \varOmega /2] \cup [{\vartheta _0} + \varOmega /2 ,{90^{\circ}}],p = 1,2 , ...,P ,\\ {\psi _q} \in [ - {90^{\circ}},{\psi _0} - \varOmega /2] \cup [{\psi _0} + \varOmega /2 ,{90^{\circ}}],q = 1,2,...,Q 。\\ \end{gathered} $ | (48) |
根据表达式(48)中的第1个条件,可以构建如下所示的一个二维零锥限制条件:
$ \begin{aligned}[b] &\left( {\begin{array}{*{20}{c}} {1 - {\boldsymbol{a}}_1^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0})} \\ {0 - ( - {\boldsymbol{a}}_2^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0}))} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1 \\ 0 \end{array}} \right) - \\ &\left( {\begin{array}{*{20}{c}} 0&{{\boldsymbol{a}}_1^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0})} \\ 0&{ - {\boldsymbol{a}}_2^{\mathrm{T}}({f_r},{\vartheta _0},{\psi _0})} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{{\boldsymbol{y}}_2}} \end{array}} \right) = {{\boldsymbol{c}}_1} - {\boldsymbol{A}}_1^{\mathrm{T}}{\boldsymbol{y}} \in {\{ 0\} ^2}。\end{aligned}$ | (49) |
其中,
$ \begin{split} & \left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{\boldsymbol{a}}_{ 1}^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2}} \\ {{\boldsymbol{a}}_{ 2}^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ 0 \end{array}} \right) - \left[ {\begin{array}{*{20}{c}} { - 1}&{{{\boldsymbol{0}}^{\mathrm{T}}}} \\ 0&{ - {\boldsymbol{a}}_{ 1}^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q})} \\ 0&{ - {\boldsymbol{a}}_{ 2}^{\mathrm{T}}({f_r},{\vartheta _p},{\psi _q})} \end{array}} \right]\\& \left( {\begin{array}{*{20}{c}} {{y_1}} \\ {{{\boldsymbol{y}}_2}} \end{array}} \right) = {{\boldsymbol{c}}_{(p - 1)Q + q + 1}} - {\boldsymbol{A}}_{(p - 1)Q + q + 1}^{\mathrm{T}}{\boldsymbol{y}} \in {{\mathrm{SOC}}^{ 3}}, \\& {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \varOmega /2] \cup [{\vartheta _0} + \varOmega /2 ,{90^{\circ}}], \\& {\psi _q} \in [ - {90^{\circ}},{\psi _0} - \varOmega /2] \cup [{\psi _0} + \varOmega /2 ,{90^{\circ}}], \\& p = 1,2 , ...,P ; q = 1,2,...,Q。\\[-1pt] \end{split} $ | (50) |
其中,
$ \begin{aligned}[b] \left( {\begin{array}{*{20}{c}} {{y_1}} \\ {\widetilde {\boldsymbol{L}}{{\boldsymbol{y}}_2}} \end{array}} \right) = &\left( {\begin{array}{*{20}{c}} 0 \\ {\boldsymbol{0}} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 1}&{{{\boldsymbol{0}}^{\mathrm{T}}}} \\ {\boldsymbol{0}}&{ - \widetilde {\boldsymbol{L}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{y_{ 1}}} \\ {{{\boldsymbol{y}}_2}} \end{array}} \right) = \\ &{{\boldsymbol{c}}_{PQ + 2}} - {\boldsymbol{A}}_{PQ + 2}^{\mathrm{T}}{\boldsymbol{y}} \in {{{\mathrm{SOC}}} ^{ 2N M + 1}} 。\end{aligned}$ | (51) |
其中,
$ {\boldsymbol{c}} = [{{\boldsymbol{c}}_1},{{\boldsymbol{c}}_2},...,{{\boldsymbol{c}}_{PQ + 1}},{{\boldsymbol{c}}_{PQ + 2}}],$ | (52) |
$ {{\boldsymbol{A}}^{\mathrm{T}}} = [{\boldsymbol{A}}_{ 1}^{\mathrm{T}},{\boldsymbol{A}}_{ 2}^{\mathrm{T}},...,{\boldsymbol{A}}_{PQ + 1}^{\mathrm{T}},{\boldsymbol{A}}_{PQ + 2}^{\mathrm{T}}]。$ | (53) |
表达式(48)的二阶锥规划设计条件转化为表达式(32)的标准SOCP形式,可以采用内点方法进行求解。其中,对称锥
$ \kappa = {\{ 0\} ^2} \times \underbrace {{{\mathrm{SOC}}^{ 3}} \times \cdot \cdot \cdot \times {{\mathrm{SOC}}^{ 3}}}_{PQ} \times {{\mathrm{SOC}}^{ 2 N M + 1}} \times {{{\mathrm{SOC}}} ^{ 2 N M + 1}} 。$ | (54) |
现在就可以采用内点方法对宽带共形阵自适应模式FIB设计的标准SOCP问题进行求解。
3 仿真验证本文宽带共形阵优化波束设计方法适用于任意结构的宽带共形阵。本仿真中的宽带共形阵由2个
对于表达式(35)选取旁瓣级幅度约束值
本文针对具有TDL结构和复数加权系数的宽带共形阵,提出基于SRV约束的自适应FIB设计,在参考频率上保持预测信号方向无偏响应以及旁瓣级恒定这2个限制条件下,根据对波束形成器输出功率值与平均空间响应偏差值这2项的加权和进行最小化处理的准则进行设计。通过将这种 FIB 设计问题转换为标准 SOCP 形式后,可以采用内点方法进行有效求解。相对现有自适应FIB优化设计方法,本文方法通过对约束条件和目标函数的合理调整,有效降低优化计算复杂度。仿真实例验证了该宽带共形阵FIB设计方法的有效性。
[1] |
VAN TREES H L. Optimum array processing: Part IV of detection, estimation and modulation theory[M]. New York: Wiley, 2002.
|
[2] |
LIU Jing, ALEX B, LUO Zhiquan, et al. Adaptive beamforming with sidelobe control: A second-order cone programming approach[J]. IEEE Signal Processing Letter, 2003, 10(11): 331-334. |
[3] |
STURM J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. OptimizationMethods and Software, 1999, 11(12): 625-653. |
[4] |
CHEN Peng, HOU Chaohuan, MA Xiaochuan, et al. Adaptive broadband beamformer for nonuniform linear array based on second order cone programming[J]. Journal of Systems Engineering and Electronics, 2009, 20(2): 278-282. |
[5] |
DUAN Huiping, BOON POH N, CHONG MENG S S, et al. Applications of the SRV constraint in broadband pattern synthesis[J]. Journal of Signal Processing, 2008, 88(4): 1035-1045. |
[6] |
CHEN Peng, LIANG Yihui, HOU Chaohuan, et al. SRV constraint based FIB design for wideband linear array[J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 941-947. |
[7] |
LUCAS C P. Steerable frequency invariant beamforming for arbitrary arrays[J]. Journal of the Acoustical Society of America, 2006, 119(6): 3839-3847. |
[8] |
丛雯珊, 余岚, 杜鹏飞, 等. 基于粒子群算法的宽带真延时平面阵列方向图综合[J]. 国防科技大学学报, 2020, 42(5): 31-36. CONG Wenshan, YU Lan, DU Pengfei, et al. Planar array pattern synthesis of wideband real time delay based on particle swarm optimization algorithm[J]. Journal of National University of Defense Technology, 2020, 42(5): 31-36. |
[9] |
王华奎, 王二庆. 基于二阶锥规划的平面阵近场等旁瓣波束优化[J]. 舰船科学技术, 2012, 34(10): 73−76. WANG Huakui, WANG Erqing. Isosidelobe optimization of planar rectangular array based on second cone programming algorithm[J]. Ship Science and Technology, 2012, 34(1): 121−124. |
[10] |
陈鹏, 郝拥军. 宽带平面阵基于空间响应偏差约束的优化波束设计[J]. 舰船科学技术, 2022, 44(20): 60-66. CHEN Peng, HAO Yongjun. Optimal beamformer design for wideband planar array based on spatial response variation constraint[J]. Ship Science and Technology, 2022, 44(20): 60-66. |