﻿ 舰船波纹管补偿装置等效仿真方法研究
 舰船科学技术  2024, Vol. 46 Issue (12): 116-120    DOI: 10.3404/j.issn.1672-7649.2024.12.020 PDF

1. 海军装备部 装备项目管理中心，北京 100010;
2. 武汉第二船舶设计研究所，湖北 武汉 430205

Research on equivalent simulation method of shipboard corrugated pipe compensation device
MA Jun1, DAI Lu2, LIU Yong2, WU Muyun2, HE Tao2
1. Project Management Office, Naval Equipment Department, Beijing 100010, China;
Abstract: Stress analysis of corrugated compensator is an important research method for the design and life assessment of corrugated pipes. In order to simplify the simulation model of corrugated pipes and improve the simulation efficiency, the finite element simulation technology of S-type corrugated pipe with single wave simplified model and symmetric simplified model under internal pressure and bending load is studied. Model simplification method and load application method are proposed. Compared with the simulation results of the complete model, the single wave simplified model and symmetric simplified model can give consistent simulation solutions for the calculation of internal pressure and bending load of corrugated pipes, and the maximum stress error is less than 1%, which meets the requirements of simulation analysis. In the simulation of S-type corrugated pipes under pressure and bending load, the symmetry of the wave section and waveform can be fully utilized by using single wave simplified model and symmetric simplified model to improve the calculation efficiency and ensure the calculation accuracy.
Key words: corrugated pipe     numerical simulation     simplified model
0 引　言

1 波纹管模型

 图 1 S型波纹管子午线方向的截面尺寸 Fig. 1 Cross section dimensions of S-shaped corrugated pipes in the radial direction

 图 2 波纹管完整模型和单波简化模型及对称简化模型 Fig. 2 Complete model, single wave simplified model, and symmetric simplified model of corrugated pipes

2 波纹管内压载荷分析

2.1 整体模型

 图 3 波纹管整体模型边界条件施加方法和应力云图 Fig. 3 Application method and stress cloud diagram of boundary conditions for the overall model of corrugated pipes
2.2 单波简化模型

 图 4 单波简化模型边界条件及内压载荷下计算结果 Fig. 4 Single wave simplified model boundary conditions and calculation results under internal pressure load
2.3 对称简化模型

 图 5 对称简化模型的边界条件施加方法 Fig. 5 The method of applying boundary conditions to symmetric simplified models

 图 6 对称简化模型下波纹管Mises应力计算结果 Fig. 6 Mises stress calculation results of corrugated pipes under symmetric simplified model
2.4 小　结

3 波纹管弯曲载荷分析

3.1 整体模型

 图 7 整体模型的弯曲载荷施加方法和边界条件 Fig. 7 Method and boundary conditions for applying bending loads to the overall model

 图 8 弯曲载荷下整体模型的应力云图 Fig. 8 Stress cloud diagram of the overall model under bending load
3.2 单波简化模型

 图 9 单波模型的载荷和边界条件设置 Fig. 9 Load and boundary condition settings for a single wave model

 图 10 单波模型在弯曲载荷下的应力云图 Fig. 10 Stress cloud diagram of single wave model under bending load
3.3 对称简化模型

 图 11 对称简化模型的边界条件施加示意图 Fig. 11 Schematic diagram of applying boundary conditions to a symmetric simplified model

 图 12 对称简化模型受弯曲载荷时的应力云图 Fig. 12 Stress cloud diagram of symmetric simplified model under bending load.
3.4 小　结

4 结　语

1） 单波简化模型和对称简化模型可有效反映波纹管的整体受力特征，利用简化模型的仿真结果与整体模型计算结果一致；

2） 对于弯曲载荷，可利用耦合约束方法将单个波段与参考点耦合，采用参考点上施加转角位移的方式模拟弯曲载荷；

3） 使用对称简化模型，可利用仅占整体模型6.6%的自由度，在内压和弯曲载荷下，获得与整体模型相比最大应力误差不超过1%的仿真结果。

 [1] 周耀兵, 顾久青, 童秀华. 316 L金属波纹管腐蚀机理分析[J]. 舰船科学技术, 2021, 43(2): 36-39. ZHOU Yaobing GU Jiuqing, TONG Xiuhua. Research on corrosion mechanism of 316 L metal bellows[J]. Ship Science and Technology, 2021, 43(2): 36-39. [2] 董仁义, 吴崇建, 李志印. 舰船蒸汽管路的柔性设计分析[J]. 舰船科学技术, 2021. DONG Renyi, WU Chongjian, LI Zhiyin. Flexibility design analysis on ship steam pipe[J]. Ship Science and Technology, 2021, 43(3): 67-70. [3] 霍世慧, 许红卫, 朱卫平, 等. 增强S形波纹管内压稳定性分析方法[J]. 火箭推进, 2022, 48(4): 66-71. HUO Shihui, XU Hongwei, ZHU Weiping, et al. Buckling of the reinforced S-shaped bellows under internal pressure[J]. Journal of Rocket Propulsion, 2022, 48(4): 66-71. [4] HARINGX JA. Instability of bellows subjected to internal pressure[J]. 1952, 7(3): 189-196. [5] 郎振华. 多层S型波纹管力学性能分析[D]. 大连: 大连理工大学, 2012. [6] CLARK R A. On the theory of thin elastic toroidal shells[J]. Journal of Mathematics and Physics, 1950, 29(3): 146−178. [7] 钱伟长, 吴明德. U型波纹管的非线性特性摄动法计算[J]. 应用数学和力学, 1983, 4(5): 595-608. QIAN Weichang, WU Mingde. The nonlinear characteristics of U-shaped bellows-calculations by the method of perturbation[J]. Applied Mathematics and Mechanics, 1983, 4(5): 595-608. [8] TAKATSU H, YAMAMOTO M, OHTA M. Stress-analysis method of U-shaped bellows and its experimental verification [J]. 1993, 22(3): 239−250. [9] 赵永亮. 运载器多层波纹管路的强度和疲劳寿命分析[D]. 大连: 大连理工大学, 2015. [10] 郭煜敬, 王志刚, 金光耀, 等. 液压成形波纹管减薄率的数值模拟研究[J]. 浙江工业大学学报, 2019, 47(1): 58-62. GUO Yujing, WANG Zhigang, JIN Guangyao, et al. Numerical simulation research on thickness reduction ratio of the bellows[J]. Journal of Zhejiang University of Technology, 2019, 47(1): 58-62. [11] 张文良, 曹景浩, 马海峰. 金属波纹管疲劳寿命优化设计研究[J]. 阀门, 2022(6): 424-427. ZHANG Wenliang, CAO Jinghao, MA Haifeng. Study on fatigue life optimization design of metal bellows[J]. Valve, 2022(6): 424-427.