﻿ 大型LNG船集管区平台结构参数化设计与计算分析
 舰船科学技术  2024, Vol. 46 Issue (12): 60-63    DOI: 10.3404/j.issn.1672-7649.2024.12.010 PDF

Parametric design and calculation analysis of large LNG carrier manifold platform structure
LIU Jinxin, CHEN Peng, ZHANG Ding, ZHANG Haiying, QIU Weiqiang, LIU Chenxiao, SHI Haitian
Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: In order to realize efficient and high quality design of large LNG carrier manifold platforms, a three-dimensional parametric design method of large LNG carrier manifold platform was proposed. The finite element model and solid model of manifold platform were quickly built through CATIA V6 software secondary development and knowledge template, and engineering drawing was realized. At the same time, a loading method for large LNG carrier manifold platform was proposed, the strength of manifold platform was calculated and checked by using finite element numerical simulation technology. The research shows that the parametric design method can effectively shorten design period and improve design accuracy. The loading method can effectively simulate the stress of manifold platform, which provides a certain reference for the design of similar LNG carrier manifold platforms in the future.
Key words: large LNG carrier manifold platform     CATIA V6     3-dimensional parametric design     knowledge engineering     strength calculation
0 引　言

1 LNG船集管区平台简介

2 大型LNG船集管区平台的参数化设计 2.1 自顶向下的建模方式

 图 1 LNG船集管区平台模型 Fig. 1 Model of LNG carrier manifold platform
2.2 零件的参数化设计

LNG集管区平台结构装配的基础为不同参数的零件，因此平台结构设计的首要步骤是建立参数化零件库。零件的参数化设计是对零件进行结构性分析，将零件的几何约束与尺寸约束等信息通过参数公式相互关联，通过修改零件的参数自动完成零件建模，减少设计人员的重复劳动[5]

2.3 模型高效转换

 图 2 SFD模型、FEM模型与SD模型 Fig. 2 SFD model, FEM model and SD model
2.4 工程图出图

 图 3 零件表与工程图 Fig. 3 Material list and drawings
3 LNG船集管区平台强度计算分析 3.1 分析对象

3.2 主要参数

3.2.1 坐标系

3.2.2 有限元模型

3.2.3 边界条件

 图 4 有限元模型与边界条件 Fig. 4 Finite element model and boundary conditions
3.3 载荷与加载方式 3.3.1 均布力

3.3.2 惯性加速度

3.4 计算对比分析

A级钢许用应力为235 MPa，316 L不锈钢许用应力为193 MPa。集管区平台采用50 mm×50 mm细网格，根据船级社规范要求，结构合成应力应不大于1.5倍材料许用应力，即A级钢区域应力许用值不超352.5 MPa，316 L不锈钢区域不超289.5 MPa。

 图 5 模型Von Mises应力云图 Fig. 5 Von mises stress contour of model

 图 6 不锈钢区域最大合成应力 Fig. 6 Max von mises stress of SUS316L

 图 7 A级钢区域最大合成应力 Fig. 7 Max von mises stress of class-A

4 结　语

 [1] 魏梅, 潘放, 汪颖异, 等. 2022 年世界船海市场评述与 2023 年展望[J]. 船舶, 2023(2): 14-32. [2] 金杨, 徐思豪, 刘成龙. 一种基于CATIA V6的雷达桅三维设计方法[J]. 船舶, 2020(6): 95-103. [3] 李银涛, 任飞华. 小型多功能液化天然气运输船集管设计[J]. 船舶, 2016(3): 73-85. [4] Sigtto, Ocimf. Recommendations for liquefied gas carriers manifolds[M]. Scotland: Witherby Publishing Group Ltd, 2018. [5] 邬旭东, 佟寅. 基于CATIA平台的三维集装箱导轨设计[J]. 船舶, 2021(1): 96-100. [6] 邬旭东, 闫凤超, 汤清之, 等. 基于CATIA平台的箱柱三维设计[J]. 船海工程, 2022, 51(6): 82-85. [7] 徐思豪, 杜文磊, 彭亚康, 等. 基于CATIA V6的船舶结构有限元网格方法[J]. 船舶工程, 2019, 41(8): 26-30. [8] 武佩佩, 邢洁鋆, 韩娅娜, 等. 基于CATIA V6的工程图矢量填充方法[J]. 西北水电, 2022, (6): 133-137 [9] ABS. Rules for building and classing marine vessels - ships. Part. 5A-General Hull Requirements, Chapter 4– Load, Section 3-Ship Motions and Accelerations [S]. 2022. [10] DNV. Rules for classification - ships. Part. 3 - Hull, Chapter. 4-Load , Section 3-Ship Motions and Accelerations [S]. 2021. [11] BV. Rules for classification of steel ships. Part. B- Hull and Stability [S]. 2020.