﻿ 典型破片侵彻船用燃油柜毁伤效应研究
 舰船科学技术  2024, Vol. 46 Issue (12): 30-38    DOI: 10.3404/j.issn.1672-7649.2024.12.006 PDF

1. 中国舰船研究设计中心，湖北 武汉 430064;
2. 武汉理工大学 船海与能源动力工程学院，湖北 武汉 430063

Research on the damage effects of marine fuel oil tank penetrated by a typical fragment
YE Longxue1, ZHANG Qi2, JI Yao2, CHEN Wei2
1. China Ship Development and Design Center, Wuhan 430064, China;
2. School of Naval Architecture, Ocean and Energy Engineering, Wuhan University of Technology, Wuhan 430063, China
Abstract: In order to explore the damage effect of marine fuel tank under typical fragment load, a numerical simulation model of fragment penetration into fuel tank was constructed, the physical process of fragment penetration into fuel tank was analyzed, and the law of cavitation transfer of fragment in fuel was analyzed. The minimum penetration kinetic energy and limit penetration velocity of the front panel of fuel tank at different angles were obtained by linear regression method. The effects of fragment velocity, incident angle and fuel tank filling rate on the damage effect of fuel tank are investigated. The results show that with the increase of fragment velocity, the maximum deflection of front and rear panels of fuel tank increases, and the cavitation size increases. With the increase of fracture angle, the deflection of fuel tank rear panel becomes smaller, and the maximum deflection position of fuel tank rear panel gradually moves upward. The fuel tank filling rate is 50% as the dividing line. When the filling rate is more than 50%, the maximum deflection deformation of the front and back panels of the fuel tank is not much different, and the 50% filling rate has a significant difference in the deflection deformation and fragmentation speed change.
Key words: marine fuel cabinet     fragment     damage effect     numerical simulation
0 引　言

1 典型燃油柜模型构建 1.1 几何模型及网格划分

 图 1 日用燃油柜三维模型 Fig. 1 3D model of daily fuel tank

 图 2 燃油柜1/4模型 Fig. 2 1/4 model of fuel tank

 图 3 破片侵彻燃油柜仿真1/4模型 Fig. 3 Simulation of fragment penetration into fuel tank 1/4 model

 图 4 压力测点布置图 Fig. 4 Layout of pressure measurement points
1.2 材料模型

2 破片侵彻燃油柜毁伤效应分析 2.1 数值模拟仿真方法验证

 图 5 1/4数值仿真模型和试验实物图 Fig. 5 Numerical simulation model and experimental physical image

 图 6 破片在蓄液结构中运动所诱导的空穴 Fig. 6 Voids induced by fragment movement in liquid storage structures

 图 7 数值计算结果与试验数据压力时程曲线对比 Fig. 7 The results of numerical calculation are compared with the pressure time history curve of test data
2.2 燃油柜毁伤效应分析

 图 8 破片侵彻燃油柜过程 Fig. 8 Fragment penetration into fuel tank process

3 不同因素对燃油柜毁伤效应的影响 3.1 破片速度

 图 9 不同速度破片入射时的空泡演化历程 Fig. 9 Evolution of cavitation under different velocity fragment incidence

 图 10 不同破片初速下前后面板挠度变形情况 Fig. 10 Deflection and deformation of front and rear panels under different initial velocities of fragments
3.2 破片入射角度

 图 11 不同角度破片入射时的空泡演化历程 Fig. 11 Evolution of cavitation under fragment incidence at different angles

 图 12 不同破片入射角度下前后面板挠度变形情况 Fig. 12 Deflection and deformation of front and rear panels under different fragment incidence angles
3.3 燃油柜充液率

 图 13 不同燃油柜充液率下燃油柜前后面板变形情况 Fig. 13 Deformation of front and rear panels of fuel tanks under different filling rates

3.4 极限穿透速度

 图 14 不同入射角度下剩余动能回归曲线 Fig. 14 Residual kinetic energy regression curve at different incident angles

4 结　语

1）建立了实尺度典型燃油柜的有限元模型，基于数值模拟仿真方法，开展了破片侵彻燃油柜的毁伤效应研究，分析了破片侵彻燃油柜的过程。分析了破片在燃油中的空泡传递规律，探究了燃油柜前后面板损伤演化规律。

2）探究了不同因素下，燃油柜的毁伤效应研究，燃油柜前后面板挠度变形随着破片速度的增加而增大，随着破片入射角度的增大，燃油柜后面板最大挠度出现位置逐渐上移，破片速度衰减也更为严重，燃油柜充液率以50%为分界线，在充液率50%以上的燃油柜而言，燃油柜前后面板最大挠度变形区别不大，50%充液率在挠度变形以及破片速度变化有明显区别。

3）用最小二乘法拟合得到了破片在不同入射角度下，破片剩余动能随破片初始动能的线性回归方程，确定了燃油柜前面板在不同入射角度下的极限穿透速度。在入射角度为0°时，破片对燃油柜前面板的极限穿透速度最小，为205.39 m/s，破片入射角度为50°时，破片对燃油柜前面板的极限穿透速度最大，为306.65 m/s。

 [1] 易亮, 陈敏. 水面舰船目标毁伤效果评估指标研究[J]. 舰船科学技术, 2010, 32(7): 102-105+109. YI Liang, CHEN Min. Study on criteria of damage effect assessment of surface warship[J]. Ship Science and Technology, 2010, 32(7): 102-105+109. [2] 吴伟, 李典, 侯海量, 等. 舱壁组合结构抗高速破片侵彻性能研究[J]. 舰船科学技术, 2022, 44(16): 13-19. WU Wei, LI Dian, HOU Hailiang, et al. Research on anti-penetration performance of composite bulkhead structure in high-speed fragments[J]. Ship Science and Technology, 2022, 44(16): 13-19. [3] MOTT N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1947, 189(1018): 300−308. [4] GURNEY R W. The initial velocities of fragments from bombs, shell, grenades[R]. Aberdeen: Ballistic Research Laboratory, 1943, 9(1): 1−16. [5] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end[M]. Cambridge: Cambridge University Press, 1963(30): 277−286. [6] 武伟明. 战斗部破片分布规律的计算[J]. 弹箭与制导学报, 1991, 11(1): 69-76. WU Weiming. Calculation of the distribution law of warhead fragments[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1991, 11(1): 69-76. [7] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下充液结构耗能机理数值分析[J]. 海军工程大学学报, 2018, 30(2): 60-65. LI Dian, HOU Hailiang, ZHU Xi, et al. Numerical analysis of energy dissipation mechanism of liquid filled structures under high speed rod projectile penetration[J]. Journal of Naval University of Engineering, 2018, 30(2): 60-65. [8] 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟[J]. 爆炸与冲击, 2018, 38(3): 473-484. HAN Lu, HAM Qing, YANG Shuang. Numerical simulation of water hammer effect in aircraft fuel tanks under high-speed impact of multiple fragments[J]. Explosion and Shock Waves, 2018, 38(3): 473-484. [9] 蓝肖颖, 李向东, 周兰伟, 等. 双破片撞击充液容器时液体内压力分布研究[J]. 振动与冲击, 2019, 38(19): 191-197. LAN Xiaoying, LI Xiangdong, ZHOU Lanwei, et al. Study on the pressure distribution inside a liquid filled container impacted by double fragments[J]. Journal of Vibration and Shock, 2019, 38(19): 191-197. [10] NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12): 2000-2016. DOI:10.1016/j.ijimpeng.2005.06.010 [11] REN P, ZHOU J, TIAN A, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact[J]. International Journal of Impact Engineering, 2018, 117(7): 153-163. [12] VARAS D, ZAERA R, LOPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10): 2598−2609. [13] 陈照峰, 刘国繁, 高伟, 等. 高速子弹穿透充液油箱的数值模拟[J]. 航空计算技术, 2014, 44(1): 98-101. CHEN Zhaofeng, LIU Guofan, GAO Wei, et al. Numerical simulation of high-speed bullets penetrating a liquid filled fuel tank[J]. Aeronautical Computing Technique, 2014, 44(1): 98-101. [14] 陈亮, 宋笔锋, 裴扬, 等. 威胁打击方向对飞机油箱液压冲击易损性的影响分析[J]. 机械强度, 2012, 34(6): 807-811. CHEN Liang, SONG Bifeng, PEI Yang, et al. Analysis of the impact of threat strike direction on the vulnerability of aircraft fuel tank hydraulic shock[J]. Journal of Mechanical Strength, 2012, 34(6): 807-811. [15] 杨砚世, 肖志华, 李向东. 破片撞击燃料箱时水锤效应的数值仿真研究[J]. 爆破器材, 2014, 43(4): 26-31. YANG Yanshi, XIAO Zhihua, LI Xiangdong. Numerical simulation study on water hammer effect of fragments impacting on fuel tanks[J]. Explosive Materials, 2014, 43(4): 26-31. DOI:10.3969/j.issn.1001-8352.2014.04.006 [16] 潘海军, 叶晓明, 李本钶, 等. 基于耦合欧拉-拉格朗日方法的舰用日用燃油柜抗冲击性能分析[J]. 中国舰船研究, 2020, 15(S1): 113-120. PAN Haijun, YE Xiaoming, LI Benke, et al. Analysis of impact resistance performance of marine daily fuel tanks based on coupled euler lagrangian method[J]. Chinese Journal of Ship Research, 2020, 15(S1): 113-120. [17] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4): 395-400. XU Shuangxi, WU Weiguo, LI Xiaobin. The defense effect of ship side protective liquid tank bulkheads on explosive fragments[J]. Explosion and Shock Waves, 2010, 30(4): 395-400. [18] BAIN JR L W, REISINGER M J. The gift code user manual. Volume I. introduction and input requirements[R]. Army Ballistic Research lab Aberdeen Proving Ground MD, 1975, 7(1): 1−202. [19] WILT T, CHOWDHURY A, COX P A. Response of reinforced concrete structures to aircraft crash impact[J]. Prepared for US Nuclear Regulatory Commission Contract, 1995, 60(471): 81−89.