﻿ 基于Comsol的纵振宽带水声换能器优化
 舰船科学技术  2024, Vol. 46 Issue (11): 145-150    DOI: 10.3404/j.issn.1672-7649.2024.11.026 PDF

Optimization of longitudinal broadband underwater acoustic transducer based on Comsol
CHEN Jinsong, GONG Chengxin, ZHAI Yajin, WANG Yazhou, MEI Yuxin
Engineering Training Center, Jiangsu Ocean University, Lianyungang 222005, China
Abstract: In order to obtain a larger operating bandwidth and reduce the fluctuation of transmitting voltage response, a cavity type longitudinal vibration acoustic transducer is proposed. Through finite element analysis, the vibration modes of the transducer at different stages and the harmonic response characteristics in air and water are studied to realize the bandwidth emission of the acoustic transducer. By optimizing the material and size of each component, the working bandwidth of the transducer is 10～31.5 kHz, the voltage response fluctuation is 5.1 dB and the voltage response amplitude is 127 dB. According to the optimized parameters, a prototype of longitudinal acoustic transducer was manufactured and tested in the anechoic tank. The available bandwidth was 11.5～30.5 kHz, the response voltage fluctuated in ±3 dB, and the average amplitude was 126 dB. The experimental results are in good agreement with the computer simulation results and meet the expected requirements.
Key words: cavity type     multiple excitation     transmission voltage response     operating bandwidth
0 引　言

1 有限元分析 1.1 有限元仿真建模

 图 1 二维轴对称模型图 Fig. 1 Two-dimensional axisymmetric model

1.2 模态分析

 图 2 换能器振动模态 Fig. 2 Vibration modes of transducer

1.3 空气中谐响应分析

 图 3 等效二维轴对称模型 Fig. 3 Equivalent two-dimensional axisymmetric model

 图 4 空气中研究分析曲线图 Fig. 4 Research and analysis curves in the air
1.4 水中的谐响应分析

 图 5 水中研究分析曲线图 Fig. 5 Diagram of research and analysis in water
2 换能器的发射性能优化 2.1 辐射头材料优化

 图 6 不同材料辐射头的发射电压响应图 Fig. 6 Emission voltage response of radiators with different materials

2.2 前、中、后质量块优化

 图 7 质量块不同材料对发射电压响应的影响 Fig. 7 Influence of different materials of mass blocks on the response of emission voltage
2.3 压电陶瓷材料优化

 图 8 不同压电陶瓷材料对发射电压响应的影响 Fig. 8 Influence of different piezoelectric ceramic materials on the emission voltage response

2.4 换能器结构尺寸优化

 图 9 结构尺寸优化示意图 Fig. 9 Schematic diagram of structure size optimization

 图 10 各部件优化对发射电压响应的影响 Fig. 10 Influence of component optimization on transmitting voltage response

 图 11 优化后的发射电压响应曲线 Fig. 11 Optimized emission voltage response curve
3 实验对比

 图 12 水下检测示意图 Fig. 12 Schematic diagram of underwater detection

 图 13 水中测试的导纳频响曲线 Fig. 13 Admittance frequency response curve tested in water

4 结　语

 图 14 发射电压响应的仿真与测试图 Fig. 14 Simulation and test diagram of transmitting voltage response

 [1] 张庆国, 黄其培, 李兴武, 等. 宽带组合式水声换能器设计研制及应用[J]. 压电与声光, 2020, 42(2): 223-229. [2] 唐平, 鲜晓军, 刘振华, 等. 高频球面宽波束水声换能器研究[J]. 压电与声光, 2019, 41(5): 647-649. [3] 莫喜平. 我国水声换能器技术研究进展与发展机遇[J]. 中国科学院院刊, 2019, 34(3): 272-282. [4] 杜海波, 秦雷, 仲超, 等. 基于1-1-3型压电复合材料水声换能器性能分析[J]. 西北工业大学学报, 2019, 37(2): 386-392. [5] 纪京召, 黄勇军. 水声换能器灵敏度混响法校准技术研究[J]. 声学与电子工程, 2019(1): 47-49. [6] 邓皓元. 纵振宽带水声换能器的仿真及优化[D]. 武汉: 华中科技大学, 2019. [7] 刘望生, 俞宏沛, 周利生. 纵振水声换能器发送电压响应频带展宽补偿[J]. 压电与声光, 2008(5): 577-578. [8] 滕舵, 陈航, 张允孟. 宽带纵振Tonpilz型水声换能器的优化设计[J]. 声学技术, 2005(1): 58-60.