﻿ 动力设备高压管道冲击失效特性研究
 舰船科学技术  2024, Vol. 46 Issue (11): 119-124    DOI: 10.3404/j.issn.1672-7649.2024.11.022 PDF

1. 中国船舶集团有限公司第七〇三研究所，黑龙江 哈尔滨 150078;
2. 哈尔滨工程大学 船舶工程学院，黑龙江 哈尔滨 150001

Impact failure characteristics of high-pressure pipelines in power equipment
WANG Lei1, YANG Rui2, SU Haochen2
1. The 703 Research Institute of CSSC, Harbin150078, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: This paper aims to investigate the failure characteristics of high-pressure pipelines in marine power equipment under impact loads. To achieve this goal, a finite element model is established using HyperMesh and the bearing capacity and failure characteristics of a new high-power marine steam turbine's high-pressure pipeline are examined under static and impact loads using Abaqus. The analysis reveals that the failure mode of high-pressure pipelines under an impact load is a result of local plastic deformation that occurs due to the connection between flanges and pipelines under high-frequency loads, as well as fractures caused by low-frequency loads. These findings can be used as a reference for designing high-pressure pipelines in marine power equipment.
Key words: finite element method     high-pressure pipeline     impact load     failure characteristics
0 引　言

1 高压管道数值模型 1.1 高压管道有限元模型及装配

 图 1 高压管道几何模型 Fig. 1 Geometric model of high pressure pipeline

 图 2 高压管道模型 Fig. 2 The model of high pressure pipeline

1.2 材料模型

 $\dot \varepsilon = D{\left[ {\frac{{{\sigma _{\mathit{d}}}}}{{{\sigma _{\mathit{y}}}}} - 1} \right]^q}。$ (1)

1.3 预应力模态分析

 图 3 管内蒸汽产生的预应力 Fig. 3 Pre-stress generated by steam inside the pipe

 图 4 高压管道的一阶模态振型 Fig. 4 The first-order modal shape of high-pressure pipeline
2 高压管道静态承载能力与失效特性 2.1 静态弯曲载荷作用下高压管道承载能力与失效特性

 图 5 高压管道静态弯曲计算模型示意图 Fig. 5 Schematic diagram of static bending calculation model for high-pressure pipelines

 图 6 静态弯曲载荷作用下高压管道载荷-位移曲线 Fig. 6 Load displacement curve of high-pressure pipeline under static bending load

 图 7 静态弯曲载荷作用下高压管道的响应 Fig. 7 Response of high pressure pipeline under static bending load
2.2 静态压缩载荷作用下高压管道承载能力与失效特性

 图 8 高压管道静态压缩计算模型示意图 Fig. 8 Schematic diagram of static compression calculation model for high-pressure pipelines

 图 9 静态压缩载荷作用下高压管道载荷-位移曲线 Fig. 9 Load displacement curve of high-pressure pipeline under static compressive load

 图 10 静态压缩载荷作用下高压管道的响应 Fig. 10 Response of high pressure pipeline under static compression load
3 冲击载荷作用下高压管道承载能力与失效特性 3.1 边界条件与输入载荷

 图 11 正三角波时历加速度曲线 Fig. 11 Time history acceleration curve of regular triangular wave
3.2 垂向冲击载荷作用下高压管道承载能力与失效特性

 图 12 不同加速度峰值a2和脉宽t3垂向冲击载荷下管道的最大等效塑性应变 Fig. 12 Maximum equivalent plastic strain of pipeline under vertical impact load with different acceleration peaks a2 and pulse width t3

 图 13 垂向冲击载荷作用下高压管道的失效形式 Fig. 13 Failure forms of high-pressure pipelines under vertical impact load
3.3 纵向冲击载荷作用下高压管道承载能力与失效特性

 图 14 不同加速度峰值a2和脉宽t3纵向冲击载荷下管道的最大等效塑性应变 Fig. 14 Maximum equivalent plastic strain of pipeline under longitudinal impact load with different acceleration peaks a2 and pulse width t3

 图 15 纵向冲击载荷作用下高压管道的失效形式 Fig. 15 Failure forms of high-pressure pipelines under longitudinal impact load
4 结　语

1）高压管道的弯曲自振周期明显高于轴向压缩或拉伸的自振周期。

2）高压管道在静态弯曲载荷作用下的承载能力小于在压缩载荷作用下的承载能力，首先发生失稳的部位在管道与法兰连接处。

3）在冲击载荷作用下高压管道的失效形式为法兰与管道连接处在高频载荷下形成的局部塑性大变形以及低频载荷下造成的断裂。

4）相比于受垂向冲击载荷，高压管道在受到纵向冲击载荷作用时螺栓、螺母以及法兰等部件并未起到较强的承载作用，均未发生塑性变形。

 [1] ZHANG A M, LI S -M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35: 033323. [2] LIU W-T, ZHANG A M, MIAO X-H, et al. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method[J]. Journal of Fluid Mechanics, 2023, 958: A42. [3] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究, 2019, 14(3): 1-13. ZHANG Aman, WANG Shiping, PENG Yuxiang, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research, 2019, 14(3): 1-13. [4] 朱锡, 李海涛, 牟金磊, 等. 水下近距爆炸作用下船体梁的动态响应特性[J]. 高压物理学报, 2010, 24(05): 343-350. ZHU Xi, LI Haitao, MOU Jinlei, et al. Dynamic response characteristics of ship-like beam subjected to underwater explosion in near field[J]. Chinese Journal of High Pressure Physics, 2010, 24(05): 343-350. [5] CANDIA S D, OJEDA R, REID W, et al. The whipping response of a submerged free-free cylinder due to underwater explosions[J]. Pacific 2017 International Maritime Conference, 2017, 1-8. [6] 周心桃, 吴国民, 李德聪. 舰船抗爆抗冲击技术体系探析[J]. 中国舰船研究, 2023, 18(2): 127-139. ZHOU Xintao, WU Guomin, LI Decong. Analysis of naval warship blast and shock resistance technology system[J]. Chinese Journal of Ship Research, 2023, 18(2): 127-139. [7] 王朝. 典型管路系统抗冲击性能分析方法新型抗冲击元器件设计研究[D]. 镇江: 江苏科技大学, 2013. [8] 冯麟涵, 汪玉, 张磊, 等. 舰用典型设备抗冲击能力定量分析[J]. 中国舰船研究, 2011(6): 23−27. FENG Linhan, WANG Yu, ZHANG Lei, et al. Quantitative analysis on shock resistance ability of shipboard equipment[J]. Chinese Journal of Ship Research, 2011(6): 23−27. [9] 冯麟涵, 韩璐, 闫明, 等. 典型部件对舰船管路系统抗冲击性能影响研究[J]. 振动与冲击, 2020, 39(4): 261-265. FENG Linhan, HAN Lu, YAN Ming, et al. A study on the impact of typical components on the anti-shock resistance of shipboard pipelines[J]. Journal of Vibration and Shock, 2020, 39(4): 261-265. [10] 沈中祥, 刘寅东, 郑婷婷. 舰艇管路系统抗冲击设计及性能分析[J]. 舰船科学技术, 2017, 39(9): 108-113. SHEN Zhongxiang, LIU Yindong, ZHENG Tingting. Design for shock resistance of piping system of naval vessels and performance analysis[J]. Ship Science and Technology, 2017, 39(9): 108-113. DOI:10.3404/j.issn.1672-7619.2017.05.021 [11] 张瑞雪, 曲艳东, 于跃, 等. 空爆载荷作用下螺栓法兰管道的动态响应研究[J]. 工程爆破, 2022, 28(1): 26-36. ZHANG Ruixue, QU Yandong, YU Yue, et al. Dynamics response of a bolted flanged pipe joint under air blast load[J]. Engineering Blasting, 2022, 28(1): 26-36. [12] 张义忠, 王帅, 马天宇. 爆炸冲击载荷下高压气瓶及其管道系统抗冲性能优化方法研究[J]. 舰船科学技术, 2019, 41(19): 17-20. ZHANG Yizhong, WANG Suai, MA Tianyu. Research on optimization method of shock resistance performance of high pressure gas cylinders and piping system under blast loading[J]. Ship Science and Technology, 2019, 41(19): 17-20. [13] 齐雅薇, 刘统章, 常倩倩. 某新型大功率船用汽轮机抗冲击特性研究[J]. 热能动力工程, 2021, 36(7): 137-144. QI Yawei, LIU Tongzhang, CHANG Qianqian. Study on impact resistance characteristics of a new high-power marine steam turbine[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(7): 137-144. [14] 中华人民共和国国家军用标准1060.1-91. 舰船环境条件要求机械环境[S]. 1991. [15] 计晨, 汪玉, 杨莉, 等. 水下爆炸载荷作用下舰用齿轮箱强度极限数值仿真研究[J]. 北京理工大学学报, 2011, 31(1): 8-11. JI Chen, WANG Yu, YANG Li, et al. Numerical simulation study on intensity threshold of marine gearbox subjected to underwater explosion load[J]. Transactions of Beijing Institute of Technology, 2011, 31(1): 8-11.