﻿ 微穿孔 — 蜂窝吸声结构参数优化设计与分析
 舰船科学技术  2024, Vol. 46 Issue (11): 63-69    DOI: 10.3404/j.issn.1672-7649.2024.11.012 PDF

1. 哈尔滨工业大学（威海）海洋工程学院，山东 威海 264209;
2. 鲁东大学蔚山船舶与海洋学院，山东 烟台 264025

Microperforation-optimization design and analysis of honeycomb sound absorption structure parameters
ZHANG Lei1, XIE Fang1, ZHANG Chengsen1, YANG Yinghui1, GUI Hongbin1, GONG Qingtao2
1. School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China;
2. Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China
Abstract: The sound absorption performance of the microperforated -honeycomb structure is mainly restricted by such parameters as the thickness, diameter, perforation rate, shape and cavity at the back of the microporous plate, and shape, core height, cell side length and wall thickness of the honeycomb structures. Based on the perspectives of resonance frequency, peak value of sound absorption coefficient, average sound absorption coefficient and theoretical sound absorption bandwidth, the influence of these parameters on the sound absorption performance of microperforated honeycomb structure was investigated. Subsequently, a finite element model was developed to validate the proposed analytical model. The mutual influence and primary and secondary relationship among the factors were studied via orthogonal test.
Key words: microperforation     honeycomb     sound absorption     orthogonal test
0 引　言

1 微穿孔—蜂窝结构的理论建模

1.1 平面波的产生

 图 1 平面波垂直入射到微穿孔—蜂窝结构声学模型 Fig. 1 Plane wave perpendicularly incident to microperforation − honeycomb structure acoustic model

 图 2 微穿孔—蜂窝结构声学结构 Fig. 2 Microperforation − honeycomb structure acoustic structure

 ${f}_{上} < \displaystyle \frac{3.84c}{{\text π} R}，$ (1)
 ${f}_{下} < \displaystyle \frac{c}{2m}。$ (2)

1.2 传递系数法计算吸声系数

 $\begin{array}{*{20}{c}} {r = \displaystyle \frac{{{H_{12}} - {H_i}}}{{{H_r} - {H_{12}}}}{e^{2j{k_0}{x_1}}}}，\end{array}$ (3)
 $\begin{array}{*{20}{c}} {\alpha = 1 - {{\left| r \right|}^2}} 。\end{array}$ (4)

1.3 微穿孔参数对吸声性能影响正交试验设计

 \begin{aligned}[b]n{\geqslant}\zeta_T^{\text{1}}+ 1&=\sum\zeta_{因素}+\sum\zeta_{交互作用}+ 1\\ &= (4-1)\times5+0+1=16。\end{aligned} (5)

1.4 蜂窝参数对吸声性能影响正交试验设计

 \begin{aligned}[b] n {\geqslant} {\zeta }_{T}^{\text{1}}+1 &=\sum {\zeta }_{因素}+\sum {\zeta }_{交互作用}+1 \\ &=(3-1)\times 4+0+1=9。\end{aligned} (6)

2 数值模型

 图 3 平面波垂直入射时微穿孔—蜂窝共振吸声结构几何模型 Fig. 3 Geometric model of microperforation-honeycomb resonance acoustic absorption structure when plane wave is vertically incident

3 结果与讨论 3.1 微穿孔参数对吸声性能影响正交试验

 图 4 微穿孔参数对吸声性能影响正交试验测试结果 Fig. 4 Orthogonal test results of influence of microperforation parameters on sound absorption performance

 图 5 微穿孔因素与各指标趋势图 Fig. 5 Trends of microperforation factors and indicators

 图 6 微穿孔参数最优方案与其他实验方案对比 Fig. 6 Comparison between the optimal scheme of micro-perforation parameters and other experimental schemes
3.2 蜂窝参数对吸声性能影响正交试验

 图 7 蜂窝参数对吸声性能影响正交试验测试结果 Fig. 7 Orthogonal test results of influence of honeycomb parameters on sound absorption performance

 图 8 蜂窝因素与各指标趋势图 Fig. 8 Trends of cellular factors and indicators

 图 9 蜂窝参数最优方案与其他实验方案对比 Fig. 9 Comparison between the optimal cellular parameter scheme and other experimental schemes
4 结　语

 [1] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975(1): 38-50. [2] SAKAGAMI K, NAKAJIMA K, MORIMOTO M, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel (MPP) absorber[J]. Acoustical Society of America Journal, 2006, 120(5): 3146. [3] SAKAGAMI K, YAMASHITA I, YAIRI M, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel absorber: Revised theory and experimental validation[J]. Noise Control Engineering Journal, 2010, 58(2): 157-162. DOI:10.3397/1.3294861 [4] RAN Z, CROCKER M J. Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound & Vibration, 2010, 329(6): 673-686. [5] ENDO M, KIM Y S. Study on direct sound reduction structure for reducing noise generated by vibrating solids[J]. Journal of Sound & Vibration, 2013, 332(11): 2643-2658. [6] 任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究[J]. 力学学报, 2013, 45(3): 349-358. DOI:10.6052/0459-1879-12-280 [7] XIN F, LU T J. A nonlinear acoustomechanical field theory of polymeric gels[J]. International Journal of Solids & Structures, 2017, 112: 133-142. [8] 任树伟, 孟晗, 辛锋先, 等. 方形蜂窝夹层曲板的振动特性研究[J]. 西安交通大学学报, 2015, 49(3): 129-135. DOI:10.7652/xjtuxb201503020 [9] XIN F X, LU T J. Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: Sound transmission[J]. Journal of the Mechanics & Physics of Solids, 2010, 58(9): 1374-1396. [10] XIN F X, LU T J. Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption[J]. Composites science and technology, 2010, 70(15): 2198-2206. DOI:10.1016/j.compscitech.2010.09.001 [11] 辛锋先, 卢天健, 陈常青. 金属正交加筋三明治板的波动特性研究[C]//中国力学学会, 郑州大学. 中国力学学会学术大会, 2009论文摘要集. 2009: 201−202. [12] HERKES W, NESBITT E, CALLENDER B, et al. The quiet technology demonstrator program: static test of airplane noise-reduction concepts[C]// Aiaa/ceas Aeroacoustics Conference, 2006. [13] 张德满, 李舜酩, 尚伟燕. 工程机械机外噪声声源分析及降噪处理[J]. 振动. 测试与诊断, 2011, 31(3): 362-365+399. [14] JIA Y, NESBITT E, UELLENBERG H, et al. Quiet technology demonstrator 2 intake liner design and validation[J]. Aiaa Journal, 2013, 251(5): 2006−2458. [15] TOYODA M, SAKAGAMI K, TAKAHASHI D, et al. Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers[J]. Applied Acoustics, 2011, 72(12): 943-948. DOI:10.1016/j.apacoust.2011.05.017 [16] XIE S, WANG D, FENG Z, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters[J]. Applied Acoustics, 2020, 158: 107046.1-107046.9. [17] PENG X, JI J, JING Y. Composite honeycomb metasurface panel for broadband sound absorption[J]. The Journal of the Acoustical Society of America, 2018, 144(4): EL255-EL261. DOI:10.1121/1.5055847 [18] JONZA J M, THOMAS H, JEFFREY K, et al. Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels[C]// Inter-noise & Noise-con Congress & Conference, 2017: 445−454. [19] WANG X, LU T J. Optimized acoustic properties of cellular solids[J]. The Journal of the Acoustical Society of America, 1999, 106(2): 56-765. [20] YANG Y, LI B, CHEN Z, et al. Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels[J]. Composites Part B Engineering, 2016, 96: 281-286. DOI:10.1016/j.compositesb.2016.04.046 [21] MENG H, GALLAND M A, ICHCHOU M, et al. On the low frequency acoustic properties of novel multifunctional honeycomb sandwich panels with micro-perforated faceplates[J]. Applied Acoustics, 2019, 152: 31-40. DOI:10.1016/j.apacoust.2019.02.028