﻿ 模块化空间设计在船舶结构分析与设计中的应用
 舰船科学技术  2024, Vol. 46 Issue (11): 38-42    DOI: 10.3404/j.issn.1672-7649.2024.11.007 PDF

1. 郑州科技学院 信息工程学院，河南 郑州 450064;
2. 郑州科技学院 大数据与人工智能学院，河南 郑州 450064

Application of modular space design in correlation analysis and design of ship structures
LIU Fengping1, DU Yuankun2
1. College of Information Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064, China;
2. College of Big Data and Artificial Intelligence, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
Abstract: This article studies the modular space design of ships, focusing on the method of module division and proposing fuzzy comprehensive evaluation. Analyze the correlation between ship structure sound and vibration, and provide the inversion force, sound power with frequency. Studied the impact correlation of ship structures, and provided the curve of impact spectrum with frequency, the curve of design spectrum velocity with ship length, the curve of predicted convergence value with iteration number, and the variation of impact force design value with weight.
Key words: modularization     ships     structure analysis
0 引　言

1 模块化空间设计 1.1 模块划分方法

 ${{\boldsymbol{R}}_g}\left( {i,j} \right) = \left[ {\begin{array}{*{20}{c}} {{R_g}\left( {1,1} \right)}&{{R_g}\left( {1,2} \right)}& \ldots &{{R_g}\left( {1,n} \right)} \\ {{R_g}\left( {2,1} \right)}&{{R_g}\left( {2,2} \right)}& \ldots &{{R_g}\left( {2,n} \right)} \\ \vdots & \vdots & \ddots & \vdots \\ {{R_g}\left( {n,1} \right)}&{{R_g}\left( {n,2} \right)}& \ldots &{{R_g}\left( {n,n} \right)} \end{array}} \right]\text{。}$ (1)

 ${\boldsymbol{R}}\left( {i,j} \right) = {{\boldsymbol{R}}_g}\left( {i,j} \right){\mu _g} + {{\boldsymbol{R}}_j}\left( {i,j} \right){\mu _i} + {{\boldsymbol{R}}_w}\left( {i,j} \right){\mu _w}\text{。}$ (2)

 $x = \frac{{x' - {{x'}_{\min }}}}{{{{x'}_{\max }} - {{x'}_{\min }}}}\text{。}$ (3)

 $\cos {\alpha _{ij}} = \frac{{\left( {{x_i},{x_j}} \right)}}{{\left\| {{x_i}} \right\| \cdot \left\| {{x_j}} \right\|}}\text{。}$ (4)

 $\left( {{x_i},{x_j}} \right) = \sum\limits_{k = 1}^m {{x_{ik}}{x_{jk}}} \text{，}$ (5)
 $\left\| {{x_i}} \right\| = \sqrt {\sum\limits_{k = 1}^m {x_{ik}^2} } \text{，}$ (6)
 $\left\| {{x_j}} \right\| = \sqrt {\sum\limits_{k = 1}^m {x_{jk}^2} } \text{。}$ (7)

 $\tilde R = \left[\begin{array}{llll} r_{11} & r_{12}& \cdots & r_{1n}\\ r_{21} & r_{22}& \cdots & r_{2n}\\ \vdots & \vdots& \ddots & \vdots\\ r_{n1} & r_{n2}& \cdots & r_{nn}\end{array}\right]\text{，}$ (8)

 $\tilde R^2_{ij} = \vee (r_{ij}\wedge r_{ji})\text{，}$ (9)

1.2 模糊综合评判

 $U = \left\{ {{u_1},{u_2},\cdots,{u_n}} \right\}\text{。}$ (10)

 $\tilde A = \left( {{a_1},{a_2},\cdots,{a_n}} \right)\text{。}$ (11)

 ${\sum\limits_{i = 1}^n {{a_i} = 1} }，{{a_i} \geqslant 0} \text{。}$ (12)

 ${u}_{i,j}=\left\{\begin{array}{ll}1，{u}_{i}比{u}_{j}重要，\\ 0.5，{u}_{i}和{u}_{j}同等重要，\\ 0，{u}_{i}没有{u}_{j}重要。\end{array} \right.$ (13)

 $\sum\limits_{i = 1}^{n + 1} {\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray}} ^{n + 1} {{u_{i,j}}} = \frac{{n\left( {n + 1} \right)}}{2}} 。$ (14)

 ${a_i} = \frac{{\displaystyle\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray}} ^{n + 1} {{u_{i,j}}} }}{{\displaystyle\sum\limits_{i = 1}^{n + 1} {\displaystyle\sum\limits_{\begin{subarray}{l} j = 1 \\ j \ne i \end{subarray}} ^{N + 1} {{u_{i,j}}} } }}\text{。}$ (15)

 ${a'_i} = \frac{\overline u}{\displaystyle\sum\limits_{i = 1}^{n} \overline u_i }\text{，}$ (16)
2 船舶结构声振相关性分析

 $m\ddot x + c\dot x + kx = F\text{。}$ (17)

 ${F_T} = \frac{{{a_T}}}{{{a_1}}}\text{。}$ (18)

 图 1 反演力随频率的变化曲线 Fig. 1 Inversion force versus frequency variation curve

 图 2 声功率随频率的变化曲线 Fig. 2 The curve of sound power variation with frequency

 图 3 不同频率下振动加速度级的变化曲线 Fig. 3 The variation curve of vibration acceleration level at different frequencies

 $VLD_{\alpha \beta }^i = 20\lg \left( {\frac{{a_\alpha ^i}}{{a_\beta ^i}}} \right)\text{。}$ (19)

 图 4 振级落差随频率的变化曲线 Fig. 4 The curve of vibration level drop with frequency

 图 5 不同频率下振动加速度的变化曲线 Fig. 5 The variation curve of vibration acceleration at different frequencies
3 船舶结构冲击相关性分析

 $P\left( t \right) = {P_m} \cdot {e^{ - \frac{1}{\lambda }}}\text{。}$ (20)

 图 6 冲击谱随频率的变化曲线 Fig. 6 The variation curve of shock spectrum with frequency

 图 7 设计谱速度随船舶长度的变化曲线 Fig. 7 Design the curve of spectral velocity variation with ship length

 图 8 不同迭代次数下预测收敛值的变化曲线 Fig. 8 The variation curve of predicted convergence value under different iteration times

 图 9 冲击力设计值随重量的变化情况 Fig. 9 The variation of impact force design value with weight
4 结　语

 [1] 李威, 杨德庆, 刘西安, 等. 船舶水下辐射噪声抑制的声振相关性方法[J]. 振动与冲击, 2023(42): 1-7+22. LI Wei, YANG Deqing, LIU Xian, et al. Acoustic-vibration correlation method for suppressing underwater radiated noise from ships[J]. Journal of Vibration and Shock, 2023(42): 1-7+22. [2] 金洪禹. 船舶系统声学性能影响因素研究[J]. 电声技术, 2023(1): 12-16. JIN Hongyu. Study on influencing factors of acoustic performance of ship system[J]. Audio Engineering, 2023(1): 12-16. [3] 朱全华, 张涛, 汪雪良, 等. 结构应力逆向推演模型及其不确定度定量分析[J]. 装备环境工程, 2023(31): 69-76. ZHU Quanhua, ZHANG Tao, WANG Xueliang, et al. Reverse deduction model of structural stress and quantitative analysis of its uncertainty[J]. Equipment Environmental Engineering, 2023(31): 69-76. [4] 毛致远, 段超伟, 宋浦, 等. 基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则[J]. 高压物理学报, 2023(2): 1-10. MAO Zhiyuan, DUAN Chaowei, SONG Pu, et al. Criterion of Plate Structure Damage Caused by Underwater Explosion Shock Wave Based on Effective Impulse[J]. Chinse Journal of High Pressure Physics, 2023(2): 1-10. [5] 王凯, 王中一, 黄连忠, 等. 基于大数据及人工智能的船舶能效智能优化研究综述[J]. 中国航海, 2023(1): 155-162. WANG Kai, WANG Zhongyi, HUANG Lianzhong, et al. Advances in intelligent ship energy efficiency optimization with big data and AI[J]. Navigation of China, 2023(1): 155-162. DOI:10.3969/j.issn.1000-4653.2023.01.022 [6] 祝捍皓, 薛洋洋, 崔智强, 等. 船舶辐射噪声贝叶斯方法反演浅海底层结构及地声参数[J]. 声学学报, 2022(6): 765-776. ZHU Hanhao, XUE Yangyang, CUI Zhiqiangm, et al. Inversion of shallow seabed structure and geoacoustic parmeters with ship radiated noise Bayesian method[J]. ACta Acustica, 2022(6): 765-776. [7] 郑智育, 涂文晏, 廖金山. 船舶火灾爆炸危险性评估与预警系统[J]. 船舶科学技术, 2024(20): 165-169. ZHENG Zhiyu, TU Wenyan, LIAO Jinshan. Risk assessment and early warning system for ship fire and explosion[J]. Ship Science and Technology, 2024(20): 165-169.