﻿ 基于统计能量法的邮轮典型舱室隔声降噪研究
 舰船科学技术  2024, Vol. 46 Issue (11): 30-37    DOI: 10.3404/j.issn.1672-7649.2024.11.006 PDF

Research on sound insulation and noise reduction of typical cabin of cruise ship based on statistical energy method
FANG Zhizhen, ZHOU Hong, GAO Zihan, ZHANG Lei
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: Luxury cruise is regarded as the world shipbuilding "crown pearl", different from ordinary ships, luxury cruise rooms as many as thousands of rooms; With the increasing requirements for cruise comfort and sound insulation and noise reduction in the world, it is necessary to study the sound insulation and noise reduction technology of typical cabins of cruise ships. This paper takes the typical modular cabin of the first domestic luxury cruise ship as the research object, and evaluates the noise of the cabin based on statistical energy method. By means of numerical simulation, the sound insulation performance of the single layer sound insulation board with different materials is analyzed, and the influence of thickness and density on the sound insulation capacity is studied. The sound insulation performance of the composite sound insulation board is further studied, and the corresponding sound insulation board laying scheme is proposed according to the noise in different areas, so as to realize the sound insulation and noise reduction of typical cruise cabins.
Key words: luxury cruise ship     statistical energy method     sound insulation technology     new lightweightfiber material
0 引　言

1 统计能量声学模型

1.1 邮轮典型舱室SEA模型

 图 1 统计能量子系统模型 Fig. 1 SEA subsystem model

 图 2 统计能量声腔及连接示意图 Fig. 2 Statistical energy cavity and connection diagram
1.2 子系统的模态密度

 图 3 SEA部分子系统模态数 Fig. 3 The modes of the SEA Subsystems
1.3 子系统的内损耗因子

 $\eta =0.41{f}^{-0.7} 。$ (1)

 $\eta =2.2/fT 。$ (2)

 图 4 板子系统内损耗因子 Fig. 4 Loss factor in plate subsystem
1.4 SEA模型的输入功率

 图 5 邮轮典型模块化舱室激励加载图 Fig. 5 Semi-infinite fluid setting
2 统计能量模型预报及分析

 图 6 邮轮典型模块化舱室噪声云图 Fig. 6 Noise cloud of typical modular cabin of cruise ship

 图 7 分组区域噪声云图 Fig. 7 Group area noise cloud map

3 邮轮典型舱室隔声降噪技术分析

3.1 VA one混响室隔声分析法

 图 8 混响室点连接模型 Fig. 8 Reverb chamber point connection model
3.2 舱室隔声板结构隔声性能分析

 图 9 声学包隔声量频谱图 Fig. 9 Acoustic package insulation spectrum diagram

 图 10 复合板隔声量频谱图 Fig. 10 Spectrum diagram of sound insulation of composite plate

3.3 典型舱室噪声控制分析

 图 11 客舱区域健身养疗休闲舱室能量输入 Fig. 11 Energy input in the cabin for fitness and wellness in the cabin

 图 12 增强型复合隔声板 Fig. 12 Enhanced composite sound insulation panel

 图 13 增强型复合隔声板隔声量 Fig. 13 Enhanced composite sound insulation panel board sound insulation quantity

 图 14 机械设备区域部分舱室能量输入 Fig. 14 Mechanical equipment area partial cabin energy input

3.4 邮轮典型舱室区域噪声评估

 图 15 分组区域噪声云图 Fig. 15 Group area noise cloud map

4 结　语

1）在10～1600 Hz频段范围内，轻纤维材料板的隔声量要明显优于传统材料隔声板约8 dB左右。在 2000～8000 Hz频段范围内，同密度同厚度情况下轻纤维材料板（U-S66/30）的隔声性能与陶瓷棉板相差不大。

2）厚度一定时，轻纤维材料板的隔声性能随着材料密度的增加而增加；而密度一定时，厚度越大轻纤维材料板的隔声量越大。当板件厚度相同时，传统材料与轻纤维材料组成的复合板件的隔声性能要高于单层材料板件0～9 dB不等。

3）针对不同区域噪声情况合理选择敷设不同结构的隔声板，其降噪效果明显，对于客舱区域降噪12～42 dB不等、服务区域降噪20～42 dB不等、机械设备区域降噪20～40 dB不等，各个舱室的总声压级通过噪声控制后得到明显改善且达标，符合CCS《邮轮规范》与IMO《船上噪声级规则》的噪声限值要求。

 [1] JANSSEN J H, BUITEN J. On acoustical designing in naval architecture[C]// INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 1973. [2] IRIE Y, TAKAGI S. Structure borne noise transmission in steel structure like a ship[C]//San Francisco, California: International Institute of Noise Control Engineering, 1978. [3] KIM S R, KIM H S, KIM J S, et al. Sound insulation performance of prefabricated cabins in cruise ships[J]. Noise Control Engineering Journal, 2012, 60(2): 184-191. DOI:10.3397/1.3683261 [4] 吴晓佳. 邮轮舱室噪声预报及浮动地板减振性能研究[D]. 镇江: 江苏科技大学, 2018. [5] KIM H S , KIM B K , CHA S I , et al. Floor impact noise reduction in ship cabins by means of a floating floor[J]. Noise Control Engineering Journal, 2006, 54(6): 406−413. [6] 孙明倩, 魏兵, 张会玲. 泡沫铝在船舶舱室中的降噪应用[J]. 河北工业科技, 2014, 31(1): 65-68. SUN Mingqian, WEI Bing, ZHANG Huiling. Application of foamed aluminum for noise controlin watercraft cabin[J]. Hebei Journal of Industrial Science and Technology, 2014, 31(1): 65-68. DOI:10.7535/hbgykj.2014yx0115 [7] JOO W H, KIM S H, BAE J G, et al. Control of radiated noise from a ship’s cabin floor using a floating floor[J]. Noise Control Engineering Journal, 2009, 57(5): 507. DOI:10.3397/1.3197861 [8] 杨永钾, 喻敏, 李廷秋. 多孔吸声材料在高速船舱室噪声控制中的应用[J]. 舰船科学技术, 2015, 37(10): 42-46+80. YANG Yongjia, YU Min, LI Ting-qiu. Application of porous sound-absorbing material on high cabin noise control[J]. Ship Science and Technology, 2015, 37(10): 42-46+80. DOI:10.3404/j.issn.1672-7649.2015.10.009 [9] 石嘉欣. 船舶声学包设计、优化及应用研究[D]. 上海: 上海交通大学, 2017. [10] 文斌. 极地船舱室噪声预报研究[D]. 镇江: 江苏科技大学, 2016. [11] 中国船级社. 邮轮舱室噪声预报指南, 指导性文件[S]. 2022, 2−9. [12] 中国船级社. 邮轮规范, 规范[S]. 北京, CCS, 2016.