﻿ 船舶电力电子变压器整流级新型直接功率自动控制
 舰船科学技术  2024, Vol. 46 Issue (10): 161-165    DOI: 10.3404/j.issn.1672-7649.2024.10.028 PDF

New direct power automatic control for rectifier stage of Marine power electronic transformer
LIU Yang, PEI Zhou-qi
Applied Technology College, Dalian Ocean University, Dalian 116300, China
Abstract: In order to improve the power factor of the rectifier stage of ship power electronic transformers, enhance the performance of ship power systems, and ensure their normal operation, a new direct power automatic control method for ship power electronic transformer rectifier stage is proposed. Construct an equivalent circuit and mathematical model for ship PET rectifier stage, obtain the orthogonal virtual components of grid side voltage and current in a stationary coordinate system, and calculate the active and reactive components of ship PET rectifier stage based on the virtual components. A new direct power control method based on sliding mode variable structure dual closed loop is proposed by combining the idea of direct power control with the sliding mode variable principle. A power inner loop sliding mode controller and a voltage outer loop sliding mode controller are designed, and these two controllers are used to achieve automatic control of the rectifier stage of ship power electronic transformers. The experimental results show that this method can ensure the stable operation of the ship's power system and ensure the smooth output of the ship's PET voltage.
Key words: marine power electronic transformer     direct power control     rectifier stage     sliding mode variable structure
0 引　言

1 直接功率自动控制方法设计

1.1 船舶PET整流级等效电路及数学模型构建

 图 1 单相船舶PET整流级等效电路图 Fig. 1 Equivalent circuit diagram of PET rectification stage for single-phase ships

 $\left\{ \begin{gathered} {u_{s\alpha }} = {S_k}{u_s}，\\ {u_{s\beta }} = {u_s}{e^{ - T/4}}，\\ {i_{s\alpha }} = {S_k}{i_s}，\\ {i_{s\beta }} = {i_s}{e^{ - T/4}}。\\ \end{gathered} \right.$ (4)

 $\left\{ \begin{gathered} P = \frac{{{u_{s\alpha }}{i_{s\alpha }} + {u_{s\beta }}{i_{s\beta }}}}{2}，\\ Q = \frac{{{u_{s\beta }}{i_{s\alpha }} - {u_{s\alpha }}{i_{s\beta }}}}{2}。\\ \end{gathered} \right.$ (5)

 $\frac{{{\mathrm{d}}{i_{s\alpha \beta }}}}{{{\mathrm{d}}t}} = \frac{{{u_{s\alpha \beta }} - {u_{ab\alpha \beta }} - R{i_{s\alpha \beta }}}}{L}。$ (6)

1.2.2 功率内环滑模控制器设计

 $\left\{ \begin{gathered} {\sigma _P} = P' - P，\\ {\sigma _Q} = Q' - Q 。\\ \end{gathered} \right.$ (8)

 $\frac{{\text{d}s}}{{\text{d}t}} = f + \frac{{E{u_{ab\alpha \beta }}}}{{2L}} \times {u_{dc}}({S_{a\alpha }}{i_{s\alpha \beta }} + {S_{a\beta }}{i_{s\alpha \beta }})。$ (9)

 图 3 本文方法控制下网侧电压电流情况 Fig. 3 The voltage and current of the lower network side controlled by this method

 图 4 输出电压幅值情况 Fig. 4 Output voltage amplitude

 图 5 有功功率突变时无功功率情况 Fig. 5 Reactive power situation when active power changes abruptly
3 结　语

 [1] 李玉生, 田杰, 张辉睿, 等. 基于电力电子变压器的级联H桥IGBT开路故障检测[J]. 船电技术, 2020, 40(12): 51-58. LI Yu-sheng, TIAN Jie, ZHANG Hui-rui, et al. Open-circuit fault detection and location of cascaded H-bridges based on power electronic transformer[J]. Marine Electric & Electronic Technology, 2020, 40(12): 51-58. [2] 李平, 陈杰. 基于功率前馈的电子变压器占空比自适应控制[J]. 计算机仿真, 2021, 38(2): 197-200+300. LI Ping, CHEN Jie. Duty cycle adaptive control of electronic transformer based on power feedforward[J]. Computer Simulation, 2021, 38(2): 197-200+300. [3] 廖志贤, 李彬彬, 索之闻, 等. 磁集成三端口电力电子变压器的改进控制方法[J]. 电力系统自动化, 2023, 47(11): 133-143. LIAO Zhi-xian, LI Bin-bin, SUO Zhi-wen, et al. Improved control method for three-port power electronic transformer based on magnetic integration[J]. Automation of Electric Power Systems, 2023, 47(11): 133-143. [4] 程启明, 赵淼圳, 马信乔, 等. 电网电压故障下向无源网络供电的MMC电力电子变压器的控制策略[J]. 太阳能学报, 2022, 43(4): 121-128. CHENG Qi-ming, ZHAO Miao-zhen,MA Xin-qiao, et al. Control strategy of MMC power electronic transformer powered to passive network under grid voltage fault[J]. ActaEnergiae Solaris Sinica, 2022, 43(4): 121-128. [5] SRIDHARAN, P, PUGAZHENDHI, S C. Memristor emulator – a nonlinear load for reduction of ferroresonance in a single-phase transformer[J/OL]. Circuit World, ahead-of-print(ahead-of-print), 2020, 47(1): 86-96. [6] AKBARIAVAZ K, FAZEL S S, KHOSRAVI M. Fully FPGA-based implementation of a modified control strategy for power electronic transformer in railway traction applications[J]. IET Power Electronics, 2021, 14(11): 1904-1919. [7] 王新宇, 赵涛, 庄富帅, 等. 级联模块化光伏电力电子变压器控制策略研究[J]. 电力电子技术, 2020, 54(3): 83-85. WANG Xin-yu, ZHAO Tao,ZHANG Fus-huai, et al. Research on the control strategy for cascaded modular photovoltaic power electronic transformer[J]. Power Electronics, 2020, 54(3): 83-85. [8] 郑丹萍, 年珩, 李来福, 等. 不平衡负载下三端口电力电子变压器二倍频功率解耦控制策略[J]. 中国电机工程学报, 2020, 40(11): 3643-3654.