﻿ 大型集装箱船甲醇燃料舱结构设计
 舰船科学技术  2024, Vol. 46 Issue (10): 53-58    DOI: 10.3404/j.issn.1672-7649.2024.10.009 PDF

Structural design of methanol fuel tank for large container vessel
CHEN Le-kun, XIE Xiao-long, LIU Chen-xiao, WANG Wei-hao
Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: Aiming at the characteristics of methanol as an alternative fuel for ships, a design scheme of methanol fuel tank suitable for large container vessels is proposed. Taking a large container vessel as an example, finite element method is used to verify the structural strength of the methanol fuel tank area. Meanwhile the influence of the fuel tank end connection design on hull structural strength is discussed. It provides reference for the structural design of methanol fuel tank for large container vessel.
Key words: large container vessel     methanol fuel tank     corrugated bulkhead     finite element method
0 引　言

1 方案介绍

 图 1 甲醇燃料舱布置侧视图 Fig. 1 Methanol fuel tank division

 图 2 甲醇燃料舱划分示意 Fig. 2 Side view of methanol fuel tank layout

 图 3 货舱区甲醇燃料舱布置 Fig. 3 Methanol fuel tank layout in cargo area

 图 4 生活楼区域甲醇燃料舱布置 Fig. 4 Methanol fuel tank layout in deckhouse area

2 槽型舱壁尺寸规范计算

2.1 槽条模数校核

 ${S M}_A = t{d^2}/6 + (adt/2)。$ (1)

 图 5 槽型舱壁形状参数定义 Fig. 5 Corrugated bulkhead shape parameter definition

 $S M = 7.8kchs{l^2}。$ (2)

 图 6 槽型舱壁示意图 Fig. 6 Corrugated bulkhead
3 有限元分析

 图 7 大型集装箱船甲醇燃料舱舱段有限元计算流程图 Fig. 7 Process of methanol fuel tank finite element analysis for large container vessel
3.1 舱段有限元计算

 图 8 舱段有限元模型半宽示意图 Fig. 8 Half width of finite element model

1）HSM-1和HSM-2分别为垂向波浪弯矩在船中处最小和最大的迎浪等效设计波。

2）HSA-1和HSA-2分别为垂向加速度在首垂线处最大和最小的迎浪等效设计波。

3）FSM-1和FSM-2分别为垂向波浪弯矩在船中处最小和最大的随浪等效设计波。

 图 9 甲醇燃料舱舱段有限元计算粗网格Von Mises合成应力包络值分布 Fig. 9 Von Mises stress envelope value distribution of methanol fuel tank coarse mesh FEA

 图 10 工况LC1-c后端壁变形示意图 Fig. 10 Deformation of aft-end bulkhead of LC1-c

 图 11 工况LC1-b侧壁变形示意图 Fig. 11 Deformation of side bulkhead of LC1-b

3.2 高应力区域细化计算

 图 12 细化节点Von Mises合成应力包络值分布 Fig. 12 Von Mises stress distribution of fine mesh area

 $\sigma_v\leqslant1.5\cdot q，$ (6)

 ${\sigma _v} \leqslant 1.7 \cdot q 。$ (7)

4 槽型舱壁端部节点设计

 图 13 槽型舱壁端部节点方案1 Fig. 13 Design 1 of corrugated bulkhead end connection

 图 14 槽型舱壁端部节点方案2 Fig. 14 Design 2 of corrugated bulkhead end connection

 图 15 方案1细化计算应力分布 Fig. 15 Stress distribution of fine mesh FEA (Design 1)

 图 16 方案2细化计算应力分布 Fig. 16 Stress distribution of fine mesh FEA (Design 2)

5 结　语

1）甲醇燃料舱舱段有限元计算工况能够较好地模拟实际运营过程中的此区域的承载情况，计算方法合理可靠；

2）槽型舱壁在前后端部处的应力集中现象较为明显，结构突变处的应力水平较高，应对主要支撑结构进行合理的设计；

3）槽条折弯处与横舱壁平台距离较小时，应力集中影响叠加，结构强度不能满足要求，结构设计应避免此情况。

 [1] 刘晓媛, 郑文青, 张玉奎, 等. 超大型集装箱船的B型LNG燃料舱结构强度分析[J]. 舰船科学技术, 2020, 42(9): 81-84. LIU X Y, ZHENG W Q, ZHANG Y K, et al. The structure strength analysis of type B LNG fuel tank for ultra-large container ship[J]. Ship Science and Technology, 2020, 42(9): 81-84. [2] 瞿荣泽, 智广信, 薛国良, 等. 双燃料船舶LNG球罐鞍座设计及其安装研究[J]. 船舶, 2020, 31(1): 39-44. QV R Z, ZHI G X, XUE G L, et al. On design and installation of LNG spherical tank's saddle for dual fuel ships[J]. Ship Boat, 2020, 31(1): 39-44. [3] 李闯, 顾俊, 郑文青, 等. 双燃料散货船C型LNG燃料舱强度分析[J]. 船海工程, 2022, 51(3): 15-19. LI C, GU J, ZHENG W Q, et al. Strength analysis of type C LNG tank of the dual fuel bulk carrier[J]. Ship Ocean Engineering, 2022, 51(3): 15-19. DOI:10.3963/j.issn.1671-7953.2022.03.004 [4] 张祺, 李文贺, 张倩, 等. Mark III型LNG燃料动力VLCC舱段有限元分析[C]//2021海峡科技专家论坛暨海峡两岸航海技术与海洋工程研讨会论文集, 2021. [5] ABS. Rules for building and classing marine vessels[S]. 2022.