﻿ 氢氧燃烧高压高速发射技术问题研究
 舰船科学技术  2024, Vol. 46 Issue (5): 180-184    DOI: 10.3404/j.issn.1672-7649.2024.05.034 PDF

Research on technical problems of high-pressure and rapid emission of hydrogenand oxygen combustion
LI Xiang, PENG Song-jiang, NIU Zhi-peng, HE Hang, ZHANG Wen-xing
The 713 Research Institute of CSSC, Zhengzhou 450015, China
Abstract: By analyzing the bottleneck problems encountered in increasing the initial speed of conventional artillery, Breaking through the limitation of gunpowder intrinsic energy and the molecular weight of gunpowder gas, To solve the difficult problem that the gunpowder combustion process is difficult to control, On the basis of the analysis of hydrogen and oxygen combustion with high heat energy and fast propulsion speed, The hydrogen and oxygen combustion emission needs to solve the determination of combustion gas composition and ratio relationship, determine the total mass of hydrogen and oxygen involved in combustion, determine the ignition energy / ignition mode / ignition point quantity, establish combustion model, projectile extrusion process analysis, establish projectile motion and kinetic model and seven scientific problems and design the structure of the combustion chamber, choose sealing, low temperature fuel supply, determine projectile form and determine the continuous launch method of five technical problems, The research focus and direction are clarified for further research on high-pressure emission technology of hydrogen and oxygen combustion.
Key words: hydrogen and oxygen combustion     high rate fire     gun     combustion model
0 引　言

1 提高火炮初速遇到的瓶颈问题

 图 1 射程和初速的关系图 Fig. 1 The relationship between the range and the initial speed
 $\frac{1}{2}\phi mv_0^2=\int_0^{l_g}Sp\mathrm{\mathrm{d}}l 。$ (1)

 图 2 身管长度和膛压、初速的关系 Fig. 2 The relationship between the length of the body and the boring pressure and the initial speed
1.1 火药固有能量——火药力的限制

 $\nu_0=\nu_l（\eta_{\text{g}}'）{\frac{1}{2}}\nu_l=\left(\frac{2f\omega}{\theta\phi m}\right)^{\frac{1}{2}} 。$ (2)

1.2 火药燃烧过程难以控制

 图 3 火炮内弹道p-l曲线 Fig. 3 Inner ballistic P-L curve in artillery
 $\nu_0==\left(\frac{2S}{\phi m}\int_0^{l_g}p\mathrm{d}l\right)^{\frac{1}{2}}。$ (3)

1.3 火药燃气分子量限制

 ${\nu _{gm}} = \frac{2}{{\gamma - 1}}{C_0} {C_0} = {\left( {\frac{{\gamma R{T_0}}}{{{M_\tau }}}} \right)^{\frac{1}{2}}}。$ (4)

2 氢和氢氧燃烧

3 科学与技术问题 3.1 科学问题 3.1.1 确定参与燃烧的气体成分和比例关系

 $2{\mathrm{H}}_2 +{\mathrm{O}}_2 =2{\mathrm{H}}_2 {\mathrm{O}}$

3.1.2 确定参与燃烧的氢氧总质量

3.1.3 确定点火能量、点火方式、点火点数量

3.1.4 燃烧模型的建立和燃烧速度、气体膨胀速度等的计算

3.1.5 弹丸挤进过程分析

3.1.6 建立弹丸的运动学和动力学模型

3.1.7 内膛烧蚀机理研究和氢脆的控制

3.2 技术问题

3.2.1 设计燃烧室的结构

3.2.2 选择密封方式

 图 4 美国URTON公司的充气口密封形式 Fig. 4 American URTON's inflatable mouth sealing form
3.2.3 低温燃料的供给

 图 5 美国URTON公司的低温燃料供给系统示意图 Fig. 5 Drama diagram of the low -temperature fuel supply system of URTON company in the United States
3.2.4 确定弹丸形式

 图 6 美国URTON公司一种带裙摆的弹丸 Fig. 6 American URTON Company a projectile with a skirt
3.2.5 确定连续发射方法

 图 7 美国URTON公司的自动装弹机 Fig. 7 American URTON's automatic loader
4 结　语

 [1] 王泽山, 等. 火炮发射装药设计原理与技术[M]. 北京: 北京理工大学出版社, 2014. [2] 张小兵. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2014. [3] 王金贵. 气体炮原理及技术[M]. 北京: 国防工业出版社, 2001. [4] 毛宗强, 等. 氢安全[M]. 北京: 化学工业出版社, 2020. [5] 吴朝岭,等. 氢气储存和运输[M]. 北京: 化学工业出版社, 2021. [6] 邓飞, 张相炎. 燃烧轻气炮氢氧燃烧特性详细反应动力学模拟[J]. 兵工学报, 2014, 35(3): 415-420. DENG F, ZHANG X Y. Burning light cannon hydrogen oxygen combustion characteristics detailed reaction dynamic simulation[J]. Journal, 2014, 35(3): 415-420. [7] 黄滔. 燃烧轻气炮点火性能研究与点火具方案设计[D]. 南京: 南京理工大学, 2015. [8] 游修东, 张相炎, 刘宁. 燃烧轻气炮发射药密闭燃烧过程数值模拟[J]. 四川兵工学报, 2014, 35(8): 22-24+31. [9] BORIS E. G. (杜飞平译). 氢燃烧与爆炸的气体热动力学[M]. 北京: 国防工业出版社, 2022.4. [10] UTRON, Inc. Combustion Light Gas Gun Technology Demonstration. 2006. [11] 马帅. 燃烧轻气炮弹丸气密性分析[D]. 南京: 南京理工大学, 2014. [12] 闫利斌, 毕世华, 邓佳. 燃烧轻气炮弹裙挤进变形及应力分析[J]. 四川兵工学报, 2013, 34(8): 61-63+79.