﻿ 大型船舶发电用三轴燃气轮机动态性能仿真
 舰船科学技术  2024, Vol. 46 Issue (3): 143-146    DOI: 10.3404/j.issn.1672-7649.2024.03.025 PDF

Simulation of dynamic performance of three-axis gas turbine for power generation of large ships
XIA Lin
Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China
Abstract: The dynamic performance simulation analysis effect of three-axis gas turbine is improved, and the dynamic performance simulation method of three-axis gas turbine for large ship power generation is proposed. The dynamic characteristics of three-axis gas turbine for power generation of large ships are calculated. Using Simulink as the development tool, the dynamic performance simulation model of three-axis gas turbine which can run in the computer is obtained, and its dynamic performance is simulated and analyzed. Through steady-state analysis, the data errors obtained by this method under different working conditions are small, all of which are controlled within 5%, which shows that the dynamic performance simulation model of three-axis gas turbine constructed by this method is accurate. Under the condition of continuous sudden load discharge, the flow rate of high and low pressure compressor and the speed of high and low pressure rotor of three-axis gas turbine show a gradient downward trend. When the load is suddenly unloaded, the fuel flow decreases rapidly, and when the load is stable, the fuel flow increases slightly after being processed by the fuel controller.
Key words: large ships     three-axis gas turbine     dynamic performance simulation
0 引　言

1 大型船舶发电用三轴燃气轮机动态性能仿真 1.1 三轴燃气轮机涡轮动态特性计算

 ${Q_C} = {U_{\rm in}} \times c \times {T_{\rm in}} \times \frac{{k \times {\beta _C}}}{{{\eta _C}}} 。$ (1)

 ${T_{\rm out}} = {T_{\rm in}}\left( {1 + \frac{{k \times {\beta _C}}}{{{\eta _C}}}} \right) \times {Q_C}。$ (2)

$c'$为燃气定压比热容；${\eta _b}$为燃烧效率；燃烧室出口温度如下：

 ${T'_{\rm out}} = \frac{{{{U'}_{\rm in}}c{{T'}_{\rm in}} + U'{\eta _b}H}}{{{{U'}_{\rm in}}c' + U'c'}} 。$ (3)

 $\sigma = \frac{{{P_{out}}}}{{{P_{in}}}} 。$ (4)

 ${D_F} = \frac{{{s_{\rm in}} - {s_{\rm out}}}}{{{f_{\rm in}} \times {{T''}_{d, {\rm out}}}}} \times {U''_{\rm in}} \times \frac{{{g_{\rm in}} - {g_{\rm out}}}}{{{{g'}_{\rm out}}}} \times {Q_A}。$ (6)

1.2 三轴燃气轮机动态性能仿真模型构建

2 实验分析

 图 1 三轴燃气轮机动态性能的变化情况 Fig. 1 Variation of dynamic performance of three-axis gas turbine

3 结　语

1）本文方法具备较高准确性，通过与实验数据的对比，在不同工况下，本文方法所获得的仿真数据与实际实验数据的误差均低于5%，表明仿真模型能够有效地模拟和预测真实系统的性能特点和响应，为实际运行提供可靠数据参考。

2）在不同工况下，燃气轮机的动态性能表现出一致的趋势，当负载连续突卸时，观察到高、低压压气机流量整体呈梯度下降趋势，且两者的动态变化量差距非常小。同时，高、低压转子转速也呈现类似的下降趋势，但低压转子的下降幅度相对较小，下降速度相对较慢。说明本文方法能够准确地反映燃气轮机在负载变化时的动态性能表现。

 [1] 李铁磊, 马正军, 马佳毅, 等. 船用燃气轮机总体性能分布式集成仿真平台设计及功能验证研究[J]. 热能动力工程, 2022, 37(3): 186-192. [2] 杨帆, 张士杰, 魏胜利, 等. 基于Modelica的回热型微型燃气轮机动态模拟[J]. 热能动力工程, 2022, 37(11): 51-60. [3] 谢心喻, 鲁业明, 王晓放, 等. 基于不同压气机特性曲线预测方法的单轴燃气轮机动态性能仿真研究[J]. 热能动力工程, 2021, 36(3): 26-34. [4] 李薇, 何兴, 许野, 等. 基于串联形式智能融合算法的燃气轮机建模与仿真[J]. 动力工程学报, 2022, 42(6): 507-513+558. [5] 黄阳, 王文欢, 迟志伟, 等. 配风比对微型燃气轮机燃烧室燃烧性能影响的数值模拟[J]. 动力工程学报, 2021, 41(12): 1054-1060+1102. [6] 何欣欣, 薛志恒, 邹东, 等. 分布式联合循环机组燃气轮机进气冷却系统性能分析研究[J]. 汽轮机技术, 2023, 65(1): 46-50. [7] 杨丽波, 段立强, 陈彪. 耦合太阳能的燃气轮机动态性能与控制特性研究[J]. 太阳能学报, 2022, 43(12): 134-143. [8] 阮圣奇, 陈开峰, 王守成, 等. 9E燃气轮机DLN1.0燃烧器三维流动特性研究[J]. 计算机仿真, 2022, 39(8): 115-120. [9] 胡刚, 张建涛, 王洪瑜, 等. 带径向通风沟的大型水轮发电机励磁电流计算[J]. 大电机技术, 2023(1): 30-36.