﻿ 高强度钢（921A）聚能切割数值仿真与试验研究
 舰船科学技术  2024, Vol. 46 Issue (3): 79-83    DOI: 10.3404/j.issn.1672-7649.2024.03.014 PDF

1. 中国船舶集团有限公司第七一三研究所，河南 郑州 450015;
2. 河南省水下智能装备重点实验室，河南 郑州 450015

Numerical simulation and experimental research of high-strength steel(921A)concentrated energy cutting
ZHANG Peng1,2, GUO Jing-bin1,2
1. The 713 Research Institute of CSSC, Zhengzhou, 450015, China;
2. Henan Key Laboratory of Underwater Intelligence Equipment, Zhengzhou, 450015, China
Abstract: Based on the finite element analysis software Ansys/LS-DYNA, the process of cutting 921A steel plate by copper linear shaped charge under four different burst height conditions was numerically simulated, in which the burst height was 0 mm, 2 mm, 4 mm and 6 mm, and the thickness of the steel plate was 4mm. According to the simulation results, it is concluded that 4 mm burst height is the closest to the optimal burst height, and the linear shaped charge under this working condition has the best cutting effect. The 4 mm burst height 921A steel plate shaped charge cutting experiment was carried out, and the experiment results were in high agreement with the numerical simulation results. The research results can provide reference for practical engineering problems.
Key words: shaped charge jet     921A steel     numerical simulation     burst height
0 引　言

1 铜切割索切割原理及结构

 $P=\frac{\rho_1\nu^2}{\left[\sqrt{a_1}+\sqrt{\frac{a_2\rho_1}{\rho_2}}\right]^2}。$ (1)

 图 1 铜切割索尺寸图(mm) Fig. 1 Dimensional drawing of copper cutting cable(mm)
2 数值仿真

2.1 模型建立

 图 2 921A钢板尺寸图(mm) Fig. 2 Steel plate dimensional drawing (mm)

 图 3 炸高示意图(mm) Fig. 3 Schematic diagram of the burst height(mm)

921A钢板采用Lagrange实体网格建模，切割索的炸药部分、药型罩部分与空气域均采用Euler实体网格建模。所有单元网格水平方向最小尺寸为0.25 mm，在平板远离被侵彻的部分，单元网格水平方向尺寸变大为0.50 mm。各部分网格划分情况如图4图5所示。

 图 4 切割索和空气域网格 Fig. 4 Cutting cord and air domain mesh

 图 5 模型部分网格 Fig. 5 Model section mesh
2.2 材料参数

 $p = F{p_{eos}}(V,W) ，$ (2)

 \begin{aligned} & p = I(1 - \frac{\omega }{{{R_1}V }}){e^{ - {R_1}V}} + J\left( {1 - \frac{\omega }{{{R_2}V}}} \right){e^{ - {R_2}V}} + \frac{{\omega W}}{V}，\end{aligned} (3)

 \begin{aligned} & {P}={{C}}_{0}+{{C}}_{1}{\mu }+{{C}}_{2}{{\mu }}^{2}+{{C}}_{3}{{\mu }}^{3}+\left({{C}}_{4}+{{C}}_{5}{\mu }+{{C}}_{6}{{\mu }}^{2}\right){E} \end{aligned} (4)

921A钢板采用LS-DYNA中的15#材料模型[4]（*MAT_JOHNSON_COOK）。该模型一般用于描述大应变（large strains）、高应变率（high strain rates）、高温（high temperatures）环境下金属材料的强度极限以及失效过程。同时采用的状态方程为*EOS_GRUNEISEN[5]

2.3 仿真结果分析

1） 0 mm炸高

 图 6 0 mm炸高下钢板聚能切割过程 Fig. 6 Shaped energy cutting process of steel plate under 0 mm burst height

2） 2 mm炸高

 图 7 2 mm炸高下钢板聚能切割过程 Fig. 7 Shaped energy cutting process of steel plate under 2 mm burst height

3）4 mm炸高

 图 8 4 mm炸高下钢板聚能切割过程 Fig. 8 Shaped energy cutting process of steel plate under 4 mm burst height

4）6 mm炸高

 图 9 6 mm炸高下钢板爆炸切割过程 Fig. 9 Shaped energy cutting process of steel plate under 6 mm burst height

3 聚能切割验证试验

 图 10 聚能切割试验结果 Fig. 10 Test results of the Concentrated cutting

 图 11 平板厚度连续值 Fig. 11 Continuous values for plate thickness

 图 12 1#试验件试验结果 Fig. 12 Test result of test piece 1#

 图 13 2#试验品试验结果 Fig. 13 Test result of test piece 2#

1#试验件，炸高为4.0 mm，在切割平板厚度为4.2～6.0 mm段，切口整齐，金属射流完全切透试验板，无撕裂现象；在6.0～9.0 mm段，未实现切割。

2#试验件，炸高为4.0 mm，在切割平板厚度为4.2～6.0 mm段，切口整齐，金属射流完全切透试验平板，无撕裂现；在6.0～9.0 mm段，切口不平整，且局部出现金属本体颜色，平板存在撕裂现象，金属射流未能完全切透平板。

4 结　语

 [1] 王向军, 徐庆林, 宋玉苏, 等. 921A钢在海水中腐蚀的力学化学效应[J]. 国防科技大学学报, 2021, 43(5): 160-167. [2] 马力, 闫永贵, 魏翔云, 等. 907A、921A钢的抗冲刷腐蚀和磨蚀性能[J]. 腐蚀科学与防护技术, 2006, 18(5): 364-366. [3] 于兆斌, 张庄. 921A钢动态断裂韧性及韧-脆转变的分析[J]. 物理测试, 2006, 24(5): 5-7. DOI:10.3969/j.issn.1001-0777.2006.05.002 [4] 陈刚, 陈小伟, 潘晓霞, 等. 921A钢帽状试件动态变形的数值模拟与实验[C]//第四届全国计算爆炸力学会议论文集, 2008: 596−602. [5] HALLQUIST J O. LS-DYNA keyword user’s manual[Z]. USA : Livermore Software Technology Corporation, 2001. [6] 王逸南, 张建伟, 王治, 等. 基于板厚补偿的921A钢与Q345钢靶板在截卵形弹体侵彻下的等效方法[J]. 兵工学报, 2021, 42(11): 2465-2475.