﻿ 复杂海洋环境水下航行体低频声传播损失计算方法综述
 舰船科学技术  2024, Vol. 46 Issue (3): 13-18    DOI: 10.3404/j.issn.1672-7649.2024.03.003 PDF

1. 中国船舶集团有限公司，上海 200011;
2. 中国舰船研究院，北京 100101

Review of calculation methods for low-frequency acoustic transmission loss of underwater vehicle in complex marine environments
JI Xing1, LIU Li-ming2, JI Fang2, LI Guo-nan2, LU Shao-qing2
1. China State Shipbuilding Corporation Limited, Shanghai 200011, China;
2. China Ship Research and Development Academy, Beijing 100192, China
Abstract: This paper reviews the traditional methods and improved methods of low-frequency acoustic feature propagation loss calculation of underwater vehicles at home and abroad, and analyzes the applicability of propagation loss simulation calculation in complex marine boundary conditions and three-dimensional marine environment, and extracts and summarizes the research status of propagation loss calculation methods in complex marine environments. In the future, the research on acoustic propagation loss of underwater vehicles will focus more on the characteristics of low-frequency acoustic propagation, the spatiotemporal-frequency coherence characteristics of the sound field, and the sound propagation law in the polar ice environment, and further improve the accuracy and stability of the propagation loss calculation method in complex marine environment.
Key words: transmission loss     three-dimensional marine environment     complex seabed topography     boundary condition
0 引　言

 图 1 水声传播仿真计算模型分类 Fig. 1 Classification of simulation calculation model for underwater sound propagation
1 声传播损失计算方法研究现状 1.1 射线理论

1.2 简正波理论

1.3 波数积分理论

1.4 抛物方程理论

1.5 现有声传播方法优缺点

2 海洋环境对声传播损失计算影响研究综述 2.1 复杂海洋地形

2.2 三维海洋环境

3 声传播损失计算方法的发展趋势 3.1 低频声传播特性及物理成因

3.2 复杂海洋环境下声场时-空-频相干特性及机理

3.3 高纬度海域及两极冰区环境下的声场模型研究

4 结　语

 [1] JONES D S. High-frequency refraction and diffraction in general media[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1963, 255(1058): 341-387. DOI:10.1098/rsta.1963.0007 [2] LAWRENCE M W. Ray theory modeling applied to low-frequency acoustic interaction with horizontally stratified ocean bottoms[J]. Journal of the Acoustical Society of America, 1985, 78(2): 649-658. DOI:10.1121/1.392433 [3] HOVEM J M . Ray trace modeling of underwater sound propagation[J]. Ray Trace Modeling, 2013: 39−49. [4] FOREMAN T L. An exact ray theoretical formulation of the Helmholtz equation[J]. Journal of the Acoustical Society of America, 1989, 86(1): 234-246. DOI:10.1121/1.398339 [5] ITURBE I , ROUX P , NICOLAS B , et al. Shallow water acoustic tomography performed from a double beamforming algorithm: simulation results[J]. IEEE Journal of Oceanic Engineering, 2009, 34(2): 140-149. [6] HARRISON C H. Formulas for ambient noise level and coherence[J]. Journal of the Acoustical Society of America, 1996, 99(4): 2055-2066. DOI:10.1121/1.415392 [7] 杨娟, 惠俊英, 王德俊, 等. 低频矢量声场建模及其应用研究[J]. 声学技术, 2006, 25(1): 16-21. [8] 韩晶, 黄建国, 曹海旺. 海洋信道仿真软件HJRAY及其在水声通信中的应用[J]. 系统仿真学报, 2007, 019(1): 35-37,97. [9] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模[J]. 物理学报, 2022, 71(2): 131-141. [10] 张仁和, 李风华. 浅海声传播的波束位移射线简正波理论[J]. 中国科学:A辑, 1999, 29(3): 241-251. [11] 鄢锦, 张仁和. 海面波浪对空气中声源激发的浅海声场的影响[J]. 自然科学进展, 2003, 13(3): 21-25. [12] PEKERIS C L . Theory of propagation of explosive sound in shallow water[J]. Geological Society of America Memoirs, 1948, 27: 1−116 [13] PIERCE A D. Extension of the method of normal modes to sound propagation in an almost‐stratified medium[J]. The Journal of the Acoustical Society of America, 1965, 37(1): 19-27. DOI:10.1121/1.1909303 [14] RUTHERFORD S R, HAWKER K E. Consistent coupled mode theory of sound propagation for a class of nonseparable problems[J]. Journal of the Acoustical Society of America, 1981, 70(2): 554-564. DOI:10.1121/1.386744 [15] ABAWI A T. An energy-conserving one-way coupled mode propagation model[J]. Journal of the Acoustical Society of America, 2002, 111(1): 160-167. DOI:10.1121/1.1419088 [16] 张仁和, 何怡, 刘红. 水平不变海洋声道中的WKBZ简正波方法[J]. 声学学报, 1994, 19(1): 1-12. [17] YAN J, ZHANG R. The WKBZ mode approach to sound propagation in two-axis underwater channel[J]. Progress in Natural Science (English Version), 1997, 22: 209-216. [18] ZHOUS H, ZHANG R H, GONG M, et al. Applications of WKBZ mode approach to matched-field localization in deep water channels[J]. Progress in Natural Science, 1997, (3): 280−286. ZHOUS H, ZHANG R H, GONG M, et al. Applications of WKBZ mode approach to matched-field localization in deep water channels[J]. Progress in Natural Science, 1997, (3): 280−286. [19] NAGL A, ÜBERALL H, HAUG A J, et al. Adiabatic mode theory of underwater sound propagation in a range‐dependent environment[J]. Journal of the Acoustical Society of America, 1978, 63(3): 739-749. DOI:10.1121/1.381782 [20] KNOBLES D P, STOTTS S A, KOCH R A. Low frequency coupled mode sound propagation over a continental shelf[J]. Journal of the Acoustical Society of America, 2003, 113(2): 781-787. DOI:10.1121/1.1534847 [21] GILBERT K E, EVANS R B. A Green’s function method for one-way wave propagation in a range-dependent ocean environment[M]//Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustics. Boston, MA: Springer US, 1986: 21−28. [22] SCHMIDT H. Numerical modeling in ocean seismo-acoustics[C]//OCEANS 91 Proceedings. IEEE, 1991, 1: 84−92. [23] GOH J T, SCHMIDT H. A hybrid coupled wave‐number integration approach to range‐dependent seismoacoustic modeling[J]. Journal of the Acoustical Society of America, 1996, 100(3): 1409-1420. DOI:10.1121/1.415988 [24] 于晓林, 许伟杰, 杨春梅, 等. 一种可稳定计算负跃层浅海环境下声场的波数积分方法[J]. 声学技术, 2022, 41(4): 497-504. [25] TAPPERT F D . The parabolic approximation method[J]. Wave Propagation and Underwater Acoustics, 1977, 70: 224−287. [26] THOMSON D J, CHAPMAN N R. A wide‐angle split‐step algorithm for the parabolic equation[J]. Journal of the Acoustical Society of America, 1983, 74(6): 1848-1854. DOI:10.1121/1.390272 [27] COLLINS M D, CEDERBERG R J, KING D B, et al. Comparison of algorithms for solving parabolic wave equations[J]. The Journal of the Acoustical Society of America, 1996, 100(1): 178-182. DOI:10.1121/1.415921 [28] SCHULTZ P. Fundamentals of geophysical data processing[J]. Acoustics Speech & Signal Processing IEEE Transactions on, 1979, 27(5): 564-565. [29] BOTSEAS G, LEE D, GILBERT K E. IFD (Implicit Finite-Difference). Wide Angle Capability, 1983: 1−25. [30] Greene, Robert R. The rational approximation to the acoustic wave equation with bottom interaction[J]. Journal of The Acoustical Society of America, 1984, 76(6): 1764-1773. DOI:10.1121/1.391561 [31] LEE Ding. Finite‐difference solution to the parabolic wave equation[J]. Journal of the Acoustical Society of America, 1981, 70(3): 795-800. DOI:10.1121/1.386918 [32] DING L , MCDANIEL S T . A finite-difference treatment of interface conditions for the parabolic wave equation: The horizontal interface[J]. Journal of the Acoustical Society of America, 1982, 73(5): 1441-1447. [33] COLLINS M D. A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom[J]. Journal of the Acoustical Society of America, 1989, 86(4): 1459-1464. DOI:10.1121/1.398706 [34] COLLINS M D . Higher-order and elastic parabolic equations for wave propagation in the ocean[LR], US Government Technology Report, 1990. [35] KÜSEL E T, SIEGMANN W L, COLLINS M D. A single-scattering correction for large contrasts in elastic layers[J]. Journal of the Acoustical Society of America, 2007, 121(2): 808-813. DOI:10.1121/1.2404627 [36] ARNOLD A , EHRHARDT M . Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics[J]. Journal of Computational Physics, 2000, 145(2): 611-638. [37] ABAWI A T, KUPERMAN W A, COLLINS M D. The coupled mode parabolic equation[J]. Journal of the Acoustical Society of America, 1997, 102(1): 233-238. DOI:10.1121/1.419819 [38] 彭朝晖, 李风华. 基于WKBZ理论的耦合简正波-抛物方程理论[J]. 中国科学(A辑), 2001(2): 165-172. [39] 彭朝晖, 张仁和. 三维耦合简正波-抛物方程理论及算法研究[J]. 声学学报, 2005, 30(2): 97-102. [40] 秦继兴, KATSNELSON Boris, 彭朝晖, 等. 三维绝热简正波-抛物方程理论及应用[J]. 物理学报, 2016, 65(3): 144-152. [41] CASTOR K, STURM F. Investigation of 3D acoustical effects using a multiprocessing parabolic equation based algorithm[J]. Journal of Computational Acoustics, 2008, 16(2): 137-162. DOI:10.1142/S0218396X08003543 [42] SPIESBERGER J L. Acoustic identification of a single transmission at 3115 km from a bottom-mounted source at Kauai[J]. Journal of the Acoustical Society of America, 2004, 115(4): 1497-1504. DOI:10.1121/1.1650014 [43] CHAPMAN N R, EBBESON G R. Acoustic shadowing by an isolated seamount[J]. Journal of the Acoustical Society of America, 1983, 73(6): 1979-1984. DOI:10.1121/1.389562 [44] DOSSO S E, CHAPMAN N R. Measurement and modeling of downslope acoustic propagation loss over a continental slope[J]. Journal of the Acoustical Society of America, 1987, 81(2): 258-268. DOI:10.1121/1.394945 [45] TAPPERT F D, SPIESBERGER J L, WOLFSON M A. Study of a novel range-dependent propagation effect with application to the axial injection of signals from the Kaneohe source[J]. Journal of the Acoustical Society of America, 2002, 111(2): 757-762. DOI:10.1121/1.1432983 [46] QIN J X, ZHANG R H, LUO W Y, et al. Sound propagation from the shelfbreak to deep water[J]. Science China Physics, Mechanics & Astronomy, 2014, 57: 1031-1037. [47] LI W, LI Z L, ZHANG R H, et al. The effects of seamounts on sound propagation in deep water[J]. Chinese Physics Letters, 2015, 32(6): 064302. DOI:10.1088/0256-307X/32/6/064302 [48] HEANEY K D, CAMPBELL R L. Three-dimensional parabolic equation modeling of mesoscale eddy deflection[J]. Journal of the Acoustical Society of America, 2016, 139(2): 918-926. DOI:10.1121/1.4942112 [49] LEE D, BOTSEAS G, SIEGMANN W L. Examination of three‐dimensional effects using a propagation model with azimuth‐coupling capability (FOR3D)[J]. Journal of the Acoustical Society of America, 1992, 91(6): 3192-3202. DOI:10.1121/1.402856 [50] BROOKE G H, THOMSON D J, EBBESON G R. PECan: A Canadian parabolic equation model for underwater sound propagation[J]. Journal of Computational Acoustics, 2001, 9(1): 69-100. DOI:10.1142/S0218396X01000425 [51] STURM F. Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides[J]. Journal of the Acoustical Society of America, 2005, 117(3): 1058-1079. DOI:10.1121/1.1855791 [52] LIN Y T, COLLIS J M, DUDA T F. A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants[J]. Journal of the Acoustical Society of America, 2012, 132(5): EL364-EL370. DOI:10.1121/1.4754421 [53] STURM F. Leading-order cross term correction of three-dimensional parabolic equation models[J]. Journal of the Acoustical Society of America, 2016, 139(1): 263-270. DOI:10.1121/1.4939735 [54] 钱治文, 商德江, 孙启航, 等. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法[J]. 物理学报, 2019, 68(2): 145-158. [55] CHIU Y S, CHANG Y Y, HSIEH L W, et al. Three-dimensional acoustics effects in the ASIAEX SCS experiment[J]. Journal of Computational Acoustics, 2009, 17(1): 11-27. DOI:10.1142/S0218396X09003835 [56] LEE D, CHEN C F. A new procedure to achieve required accuracy in computational ocean acoustics: theoretical development[J]. Journal of Computational Acoustics, 2012, 20(4): 1250012. DOI:10.1142/S0218396X12500129 [57] STURM F, KORAKAS A. Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model[J]. Journal of the Acoustical Society of America, 2013, 133(1): 108-118. DOI:10.1121/1.4770252 [58] LI S, YUAN S, LIU S, et al. Characteristics of low-frequency acoustic wave propagation in ice-covered shallow water environment[J]. Applied Sciences, 2021, 11(17): 7815. DOI:10.3390/app11177815 [59] 李整林, 余炎欣. 深海声学研究进展[J]. 科学通报, 2022, 67(2): 125-134. [60] 殷敬伟, 马丁一, 张宇翔, 等. 极地海冰声波导建模综述[J]. 物理学报, 2022, 71(8): 162-172. [61] 李启虎, 黄海宁, 尹力, 等. 北极水声学研究的新进展和新动向[J]. 声学学报, 2018, 43(4). DOI:10.15949/j.cnki.0371-0025.2018.04.002