舰船科学技术  2024, Vol. 46 Issue (2): 81-85    DOI: 10.3404/j.issn.1672-7649.2024.02.014   PDF    
X舵欠驱动AUV凯恩动力学建模
杨柯, 唐杨周     
中国计量大学 机电学院,浙江 杭州 310018
摘要: X舵欠驱动AUV结构复杂、舵片与本体之间相互作用力增多,对其进行动力学建模变得非常困难。为了克服相互作用力对建模过程的影响,引入凯恩动力学的相关知识,推导出X舵欠驱动AUV的凯恩动力学模型。以广义坐标为基础,推导出力的作用点处的广义速度、偏速度、偏角速度的计算公式,给出了计算广义主动力和广义惯性力的方法,展示了凯恩动力学的建模步骤。通过水平面和垂直面的仿真结果,验证了该建模方法的有效性。该建模方法可以避免相互作用力的计算,清晰地展示出力对动力学模型的贡献。
关键词: X舵欠驱动AUV     凯恩动力学     广义主动力     广义惯性力    
Kane dynamics modeling of X-rudder underactuated AUV
YANG Ke, TANG Yang-zhou     
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Abstract: X-rudder underactuated AUV has complex structure and more interaction force between rudder and body, so it is very difficult to model its dynamics. In order to overcome the influence of the interaction force on the modeling process, the Kane dynamics modelling of the X-rudder underactuated AUV are deduced by introducing the related knowledge of Kane dynamics. Based on the generalized coordinates, the calculation formulas of the generalized velocity, partial velocity and partial angular velocity at the point of action of the force are deduced, the methods for calculating the generalized active force and the generalized inertial force are given, and the modeling steps of Kane dynamics are shown. The effectiveness of the modeling method is verified by the motion simulation of horizontal and vertical planes. The modeling method can avoid the calculation of the interaction force and clearly show the contribution of the force to the dynamic model.
Key words: X-rudder underactuated AUV     Kane dynamics     generalized active force     generalized inertia force    
0 引 言

AUV由于其自主性强、运动灵活等特点,在海洋观测[13]、水下组网[4,5]、水下目标跟踪[6,7]等领域发挥了重要作用。动力学模型作为机器人研究的一项重要内容,在AUV设计阶段的受力分析、控制算法设计、计算机仿真验证等方面有着重要作用。

文献[89]通过N-E(Newton-Euler)方程研究了四旋翼无人机的动力学问题。在建模过程中,将旋翼作为质点,仅提供升力而忽略旋翼自身转动以及旋翼与本体之间的相互作用。文献[1012]从能量出发,推导出机械手、Delta机器人的L-E(Lagrange-Euler)方程。该方法需计算动能和势能,通过求解二阶微分方程获得最终的动力学模型,计算机求解效率较低。Kane动力学运算效率高、模型结构简单,非常适合处理多刚体建模问题,满足实时控制的需求。该方法已应用在无人自行车[13]、船载Stewart平台[14]、太空探测车[15]、F直升机吊装系统[16]、机械手[17]的动力学建模问题中。

本文将Kane方程应用在X舵欠驱动AUV的动力学建模中,可避免N-E方程建模时,需考虑的舵与AUV本体之间的相互作用力,也不需计算L-E方程建模时用到的动能和势能以及求解二阶微分方程。该方法可清晰地展示哪些力对X舵欠驱动AUV的动力学模型有贡献,也可非常方便地将外界作用力添加到动力学方程中。

1 坐标系与旋转矩阵

X舵欠驱动AUV是由本体和X舵组成,坐标系如图1图2所示。为了便于公式的推导,本文引入Z函数。

图 1 惯性坐标系与载体坐标系 Fig. 1 The inertia coordinate and body coordinate

图 2 舵及其载体坐标系 Fig. 2 Rudder and body coordinate

AUV本体相对于惯性坐标系的旋转矩阵为:

$\begin{aligned} & {}_b^ER = {\left( {{}_E^bR} \right)^{\mathrm{T}}} = \\ & \left[ {\begin{array}{*{20}{c}} {{Z_4}{Z_6}}&{ - {Z_2}{Z_5} + {Z_1}{Z_3}{Z_6}}&{{Z_1}{Z_5} + {Z_2}{Z_3}{Z_6}} \\ {{Z_4}{Z_5}}&{{Z_2}{Z_6} + {Z_1}{Z_3}{Z_5}}&{ - {Z_1}{Z_6} + {Z_2}{Z_3}{Z_5}} \\ { - {Z_3}}&{{Z_1}{Z_4}}&{{Z_2}{Z_4}} \end{array}} \right]。\end{aligned}$ (1)

X舵是由4个独立的舵组成(见图2),$ {y_i}( i = 1,{\text{ }}2, {\text{ }}3,{\text{ }}4 ) $为舵的转轴,$ {O_i}\left( {i = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4} \right) $为与舵固连的载体坐标系的原点,位于舵与本体的连接处。$ {x_i}( i = 1,{\text{ }}2, {\text{ }}3,{\text{ }}4 ) $初始位置与图1中的$ x $轴平行,方向一致。$ {\delta _i}( i = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4 ) $为舵角。

舵1可看作是载体坐标系$ \left\{ b \right\} $$ x $轴旋转$ - {135^ \circ } $,绕$ {y_1} $轴旋转$ {\delta _1} $得到;舵2可看作是载体坐标系$ \left\{ b \right\} $$ x $轴旋转$ - {45^ \circ } $,绕$ {y_2} $轴旋转$ {\delta _2} $得到;舵3可看作是载体坐标系$ \left\{ b \right\} $$ x $轴旋转$ {45^ \circ } $,绕$ {y_3} $轴旋转$ {\delta _3} $得到;舵4可看作是载体坐标系$ \left\{ b \right\} $$ x $轴旋转$ {135^ \circ } $,绕$ {y_4} $轴旋转$ {\delta _4} $得到。AUV本体相对于舵的旋转矩阵为$ {}_b^1R $$ {}_b^2R $$ {}_b^3R $$ {}_b^4R $

2 运动学分析

X舵欠驱动AUV本体有6个自由度,X舵有4个自由度,因此,广义坐标可写为:

$ q = \left\{ {{x_g},{y_g},{z_g},\phi ,\theta ,\psi ,{\delta _1},{\delta _2},{\delta _3},{\delta _4}} \right\}。$ (2)

式中:$ {x_g},{y_g},{z_g} $为AUV本体重心相对于惯性坐标系的位置;$ {\delta _i}\left( {i = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4} \right) $为舵角。广义速度为:

$\begin{aligned} & {u_1} = {\dot x_g},{\text{ }}{u_2} = {\dot y_g},{\text{ }}{u_3} = {\dot z_g},{\text{ }}{u_4} = \dot \phi ,{\text{ }}{u_5} = \dot \theta ,\\ & {\text{ }}{u_6} = \dot \psi ,{\text{ }}{u_7} = {\dot \delta _1},{\text{ }}{u_8} = {\dot \delta _2},{\text{ }}{u_9} = {\dot \delta _3},{\text{ }}{u_{10}} = {\dot \delta _4}。\end{aligned}$ (3)
2.1 AUV本体的运动学分析

AUV本体的角速度在载体坐标系$ \left\{ b \right\} $下的矢量形式为:

$\begin{aligned} & {}^b{\omega _b} = p{n_x} + q{n_y} + r{n_z} = \left( {{u_4} - {Z_3}{u_6}} \right){n_x} + \\ & \left( {{Z_2}{u_5} +{Z_1}{Z_4}{u_6}} \right){n_y} + \left( { - {Z_1}{u_5} + {Z_2}{Z_4}{u_6}} \right){n_z}。\end{aligned}$ (4)

式中:$ Z_{1}=\sin \varphi,Z_{2}=\cos \varphi,Z_{2}=\sin \theta,Z_{4}=\cos \theta $$ Z_{5}= \sin \psi,Z_{6}=\cos \psi $$ {n_x}、{n_y}、{n_z} $均为与载体坐标系$ \left\{ b \right\} $的3个坐标轴对应的单位矢量。

由偏角速度的计算公式$ {\tilde \omega _{b,i}} = {{{\partial ^b}{\omega _b}}/{\partial {u_i}}} $可知,偏角速度为:

$ \begin{split} & {{\tilde \omega }_{b,1}} = 0,{\text{ }}{{\tilde \omega }_{b,2}} = 0,{\text{ }}{{\tilde \omega }_{b,3}} = 0,{\text{ }}{{\tilde \omega }_{b,4}} = {n_x},{\text{ }}{{\tilde \omega }_{b,5}} = \\ & \left( {{Z_2}{n_y} - {Z_1}{n_z}} \right) {{\tilde \omega }_{b,6}} = \left( {{Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z}} \right), \\ & {\text{ }}{{\tilde \omega }_{b,7}} = {{\tilde \omega }_{b,8}} = {{\tilde \omega }_{b,9}} = {{\tilde \omega }_{b,10}} = 0 ,\end{split} $ (5)

因此,AUV本体重心处的速度在载体坐标系$ \left\{ b \right\} $下的矢量形式为:

$ \begin{gathered} {}^b{v_g} = u{n_x} + v{n_y} + w{n_z} = \left( {{Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3}} \right){n_x} + \\ \left( {{Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3}} \right){n_y} + \left( {{Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3}} \right){n_z} 。\end{gathered} $ (6)

式中:$ Z_{7}=-Z_{2} Z_{5}+Z_{1} Z_{2} Z_{6};Z_{8}=Z_{2} Z_{6}+Z_{1} Z_{3} Z_{5};Z_{0}= $$Z_{1} Z_{5}+Z_{2}Z_{3} Z_{6};Z_{10}= -Z_{1} Z_{6}+Z_{2} Z_{2} Z_{3} $$ u、v、w $均为AUV本体重心处的速度在载体坐标系$ \left\{ b \right\} $下的表示形式。

AUV本体浮心处的速度在载体坐标系$ \left\{ b \right\} $下的矢量形式为:

$\begin{split} & {}^b{v_c} = {}^b{v_g} + {}^b{\omega_{\text{b}}} \times {}^b{r_{gc}} = [ {Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3} + \\ & {Z_{11}}{u_5} + {Z_{12}}{u_6} ]{n_x} + [ {Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3} -{z_{gc}}{u_4} -\\ & {x_{gc}}{Z_1}{u_5} + {Z_{13}}{u_6} ]{n_y} + [ {Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3} +\\ & {y_{gc}}{u_4} - {x_{gc}}{Z_2}{u_5} - {Z_{14}}{u_6},]{n_z}。\end{split}$ (7)

式中:$ Z_{11} = z_{\mathrm{gc}}Z_2 + y_{\mathrm{gc}}Z_1;Z_{12} = z_{\mathrm{gc}}Z_1Z_4 - y_{\mathrm{gc}}Z_2Z_4;$$Z_{13}= x_{\mathrm{gc}}Z_2Z_4+z_{\mathrm{gc}}Z_3Z_{14}=y_{\mathrm{gc}}Z_3+x_{\mathrm{gc}}Z_1Z_4 $$ {}^b{r_{gc}} $为重心到浮心的位置矢量;$ {x_{gc}}、{y_{gc}}、{z_{gc}} $均为$ {}^b{r_{gc}} $在载体坐标系$ \left\{ b \right\} $下的坐标。

推进器与本体连接处位于载体坐标系$ \left\{ b \right\} $$ x $轴上,速度为:

$ \begin{split} & {}^b{v_T} = {}^b{v_g} + {}^b{\omega _{\text{b}}} \times {}^b{r_{g,T}} = \left[ {{Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3}} \right]{n_x} + \\ & \left[ {{Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3} - {x_{g,T}}{Z_1}{u_5} + {x_{g,T}}{Z_2}{Z_4}{u_6}} \right]{n_y} + \\ & \left[ {{Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3} - {x_{g,T}}{Z_2}{u_5} - {x_{g,T}}{Z_1}{Z_4}{u_6}} \right]{n_z} 。\end{split} $ (8)

式中,$ {x_{g,T}} $为推进器与本体连接处在载体坐标系$ \left\{ b \right\} $下的坐标。

由偏速度计算公式$ {\tilde v_{g,i}} = {{\partial {}^b{v_g}} / {\partial {u_i}}} $$ {\tilde v_{c,i}} = {{\partial {}^b{v_c}} / {\partial {u_i}}} $$ {\tilde v_{T,i}} = {{\partial {}^b{v_T}}/ {\partial {u_i}}} $可知,X舵欠驱动AUV本体浮心、重心、推进器的偏速度为:

$\begin{split} & {{\tilde v}_{c,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{c,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} , {{\tilde v}_{c,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{c,4}} = - {z_{gc}}{n_y} +\\ & {y_{gc}}{n_z} , {{\tilde v}_{c,5}} = {Z_{11}}{n_x} - {x_{gc}}{Z_1}{n_y} - {x_{gc}}{Z_2}{n_z},{\text{ }}{{\tilde v}_{c,6}} = {Z_{12}}{n_x} + \\ &{Z_{13}}{n_y} - {Z_{14}}{n_z}{{\tilde v}_{c,7}} = {\text{ }}{{\tilde v}_{c,8}} = {{\tilde v}_{c,9}} = {{\tilde v}_{c,10}} = 0 。\end{split}$ (9)
$\begin{split} & {{\tilde v}_{g,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{g,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} {{\tilde v}_{g,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{g,4}} ={{\tilde v}_{g,5}} = \\ & {{\tilde v}_{g,6}} = {\text{ }}{{\tilde v}_{g,7}} = {\text{ }}{{\tilde v}_{g,8}} = {\text{ }}{{\tilde v}_{g,9}} = {\text{ }}{{\tilde v}_{g,10}} = 0, \end{split}$ (10)
$ \begin{split} & {{\tilde v}_{T,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{T,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} {{\tilde v}_{T,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{T,5}} = \\ & - {x_{g,T}}{Z_1}{n_y} - {x_{g,T}}{Z_2}{n_z} {{\tilde v}_{T,6}} = {x_{g,T}}{Z_2}{Z_4}{n_y} - \\ &{x_{g,T}}{Z_1}{Z_4}{n_z},{\text{ }}{{\tilde v}_{T,4}} = {\text{ }}{{\tilde v}_{T,7}} = {\text{ }}{{\tilde v}_{T,8}} = {\text{ }}{{\tilde v}_{T,9}} = {\text{ }}{{\tilde v}_{T,10}} = 0 。\end{split} $ (11)

AUV本体重心处的加速度的矢量形式为:

$ {}^b{a_g} = \frac{{{\mathrm{d}}{}^b{v_g}}}{{{\mathrm{d}}t}} = {Z_{15}}{n_x} + {Z_{16}}{n_y} + {Z_{17}}{n_z} 。$ (12)

式中:$ Z_{15}Z_4Z_6\dot u_1+Z_4Z_5\dot u_2-Z_3\dot u_3;Z_{16}=Z_7\dot u_1+Z_8\dot u_2+$$Z_1Z_4\dot u_3, Z_{17}= Z_9\dot u_1+Z_{10}\dot u_2+Z_2Z_4\dot u_3 $

AUV本体角加速度的矢量形式为:

$ {}^b{\alpha _b} = \frac{{{\mathrm{d}}{}^b{\omega _b}}}{{{\mathrm{d}}t}} = {Z_{18}}{n_x} + {Z_{19}}{n_y} + {Z_{20}}{n_z}。$ (13)

式中:$ {Z_{18}} = {\dot u_4} - {Z_4}{u_5}{u_6} - {Z_3}{\dot u_6} $${Z_{19}} = - {Z_1}{u_4}{u_5} +{Z_2}{\dot u_5} +$$ {Z_2}{Z_4}{Z_6}{u_4} \ -\ {Z_1}{Z_3}{Z_5}{u_6} \ +\ {Z_1}{Z_4}{\dot u_6} $$ {Z_{20}} = - {Z_2}{u_4}{u_5} - {Z_1}{\dot u_5} - $${Z_1}{Z_4}{u_4}{u_6} - {Z_2}{Z_3}{Z_5}{u_6} + {Z_2}{Z_4}{\dot u_6} $

2.2 X舵的运动学分析

X舵的角速度分别为:

$\begin{split} & {}^i{\omega _i} = {}_b^iR{}^b{\omega _b} + {\dot \delta _i}{n_{i,y}} = {}^i{\omega _{i,x}}{n_{i,x}} +\\ & {}^i{\omega _{i,y}}{n_{i,y}} + {}^i{\omega _{i,z}}{n_{i,z}}\left( {i = 1,2,3,4} \right)。\end{split} $ (14)

式中:$ {}^i{\omega _{i,x}} $$ {}^i{\omega _{i,y}} $$ {}^i{\omega _{i,z}} $为X舵的角速度$ {}^i{\omega _i} $在坐标系$ \left\{ {{O_i}} \right\} $下的分量。

偏角速度可表示为:

$ {\tilde \omega _{i,r}} = {{\partial {}^i{\omega _i}} / {\partial {u_r}}}{\text{ }}\left( {i = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4} \right),$ (15)

X舵重心处的速度为:

$ \begin{split} ^iv_{ig}=& {}_b^iR^bv_g+_b^iR\left(^b\omega\times^br_{g,O_i}\right)+^i\omega_i\times^ir_{O_i,ig}= \\ &{} ^iv_{ig,x}n_{i,x}+^iv_{ig,y}n_{i,y}+^iv_{ig,z}n_{i,z}\left(i=1,2,3,4\right)。\end{split} $ (16)

式中:$ {}^i{v_{ig,x}} $$ {}^i{v_{ig,y}} $$ {}^i{v_{ig,z}} $为X舵重心处的速度$ {}^i{v_{ig}} $在坐标系$ \left\{ {{O_i}} \right\} $下的分量。

X舵重心处的偏速度为:

$ {\tilde v_{ig,r}} = {{\partial {}^i{v_{ig}}} \mathord{\left/ {\vphantom {{\partial {}^i{v_{ig}}} {\partial {u_r}}}} \right. } {\partial {u_r}}},\left( {i = 1,2,3,4} \right),$ (17)

舵的角加速度为:

$ {}^i{\alpha _i} = \frac{{{\mathrm{d}}{}^i{\omega _i}}}{{{\mathrm{d}}t}} = {}^i{\alpha _{i,x}}{n_{i,x}} + {}^i{\alpha _{i,y}}{n_{i,y}} + {}^i{\alpha _{i,z}}{n_{i,z}},\left( {i = 1,2,3,4} \right)。$ (18)

式中:$ {}^i{\alpha _{i,x}} $$ {}^i{\alpha _{i,y}} $$ {}^i{\alpha _{i,z}} $为X舵的角加速度$ {}^i{\alpha _i} $在坐标系$ \left\{ {{O_i}} \right\} $下的分量。

舵重心处的加速度为:

$ {}^i{a_{ig}} = \frac{{{\mathrm{d}}{}^i{v_{ig}}}}{{{\mathrm{d}}t}} = {}^i{a_{ig,x}}{n_{i,x}} + {}^i{a_{ig,y}}{n_{i,y}} + {}^i{a_{ig,z}}{n_{i,z}},\left( {i = 1,2,3,4} \right)。$ (19)

式中:$ {}^i{a_{ig,x}} $$ {}^i{a_{ig,y}} $$ {}^i{a_{ig,z}} $为X舵重心处的加速度$ {}^i{a_{ig}} $在坐标系$ \left\{ {{O_i}} \right\} $下的分量。

3 动力学分析 3.1 AUV本体的动力学分析

AUV本体的质量为$ {m_b} $,惯性张量为$ {}^b{I_b} $,受到惯性力$ F_b^ * $、惯性矩$ T_b^ * $、重力$ {G_b} $、浮力$ {B_b} $、水动力$ {F_{\text{b}}} $[18]、水动力矩$ {T_b} $[18]、推进器推力$ T $、舵对AUV本体的反作用力矩$ {T_{ - i}}\left( {i = 1,2,3,4} \right) $(方向为${n_{iy}}( i = $1, 2, 3, 4)的影响。

AUV本体的惯性力和惯性矩为:

$ \begin{gathered} F_b^ * = - {m_b}{}^b{a_g} = F_{b,x}^ * {n_x} + F_{b,y}^ * {n_y} + F_{b,z}^ * {n_z} ,\\ T_b^ * = - {}^b{I_b}{}^b{\alpha _b} - {}^b{\omega _b} \times {}^b{I_b} \cdot {}^b{\omega _b} = T_{b,x}^ * {n_x} + T_{b,y}^ * {n_y} + T_{b,z}^ * {n_z} 。\end{gathered} $ (20)

式中:$ F_{b,x}^ * 、F_{b,y}^ * 、F_{b,z}^ * $为惯性力$ F_b^ * $在载体坐标系$ \left\{ b \right\} $下的分量;$ T_{b,x}^ * 、T_{b,y}^ * 、T_{b,z}^ * $为惯性矩$ T_b^ * $在载体坐标系$ \left\{ b \right\} $下的分量。

AUV本体的惯性力和惯性矩对广义惯性力的贡献$ F_{M,r}^ * = F_b^ * \cdot {\tilde v_{g,r}} + T_b^ * \cdot {\tilde \omega _{b,r}} $,可以表示为:

$ \begin{split} & F_{M,1}^ * = {Z_4}{Z_6}F_{b,x}^ * + {Z_7}F_{b,y}^ * + {Z_9}F_{b,z}^ * ,{\text{ }}F_{M,2}^ * = {Z_4}{Z_5}F_{b,x}^ * + \\ & {Z_8}F_{b,y}^ * + {Z_{10}}F_{b,z}^ * F_{M,3}^ * = - {Z_3}F_{b,x}^ * + {Z_1}{Z_4}F_{b,y}^ * + {Z_2}{Z_4}F_{b,z}^ * , \\ &{\text{ }}F_{M,4}^ * = T_{b,x}^ * ,{\text{ }}F_{M,5}^ * = {Z_2}T_{b,y}^ * - {Z_1}T_{b,z}^ * F_{M,6}^ * ={Z_1}{Z_4}T_{b,y}^ * +\\ & {Z_2}{Z_4}T_{b,z}^ * ,{\text{ }}F_{M,7}^ * = F_{M,8}^ * = F_{M,9}^ * = F_{M,10}^ * = 0。\\[-1pt] \end{split} $ (21)

施加在AUV本体上的水动力和水动力矩对广义主动力的贡献$ F_{b,r}^{} = F_b^{} \cdot {\tilde v_{g,r}} + T_b^{} \cdot {\tilde \omega _{b,r}} $为:

$ \begin{split} & {F_{{{b}},1}} = {Z_4}{Z_6}{F_{b,x}} + {Z_7}{F_{b,y}} + {Z_9}{F_{b,z}},{\text{ }}{F_{b,2}} = {Z_4}{Z_5}{F_{b,x}} + \\ & {Z_8}{F_{b,y}} + {Z_{10}}{F_{b,z}}{F_{b,3}} = - {Z_3}{F_{b,x}} + {Z_1}{Z_4}{F_{b,y}} + {Z_2}{Z_4}{F_{b,z}},\\ & {F_{h,4}} = {T_{b,x}},{F_{b,5}} = {Z_2}{T_{b,y}} - {Z_1}{T_{b,z}}{F_{b,6}} = {Z_1}{Z_4}{T_{b,y}} +\\ &{Z_2}{Z_4}{T_{b,z}},{\text{ }}{F_{b,7}} = {F_{b,8}} = {F_{b,8}} = {F_{b,10}} = 0 。\end{split} $ (22)

AUV本体重力对广义主动力的贡献$ F_{G,r}^{} = G_b^{} \cdot {\tilde v_{g,r}} $为:

$ \begin{split} &{F_{G,1}} = {Z_4}{Z_6}{G_{b,x}} + {Z_7}{G_{b,y}} + {Z_9}{G_{b,z}},{\text{ }}{F_{G,2}} = {Z_4}{Z_5}{G_{b,x}} + \\ & {Z_8}{G_{b,y}} + {Z_{10}}{G_{b,z}}{F_{G,3}} = - {Z_3}{G_{b,x}} + {Z_1}{Z_4}{G_{b,y}} + {Z_2}{Z_4}{G_{b,z}},\\ &{\text{ }}{F_{G,r}} = 0\left( {r = 4,{\text{ }}5,{\text{ }} \cdots ,{\text{ }}10} \right) ,\\[-1pt] \end{split} $ (23)

式中,$ {G_{b,x}}、{G_{b,y}}、{G_{b,z}} $均为重力$ {G_b} $在载体坐标系$ \left\{ b \right\} $下的分量。

AUV本体浮力对广义主动力的贡献$ F_{B,r}^{} = B_b^{} \cdot {\tilde v_{c,r}} $为:

$ \begin{split} & {F_{B,1}} = {Z_4}{Z_6}{B_{b,x}} + {Z_7}{B_{b,y}} + {Z_9}{B_{b,z}},{\text{ }}{F_{B,2}} = {Z_4}{Z_5}{B_{b,x}} + \\ & {Z_8}{B_{b,y}} + {Z_{10}}{B_{b,z}} {F_{B,3}} = - {Z_3}{B_{b,x}} + {Z_1}{Z_4}{B_{b,y}} + {Z_2}{Z_4}{B_{b,z}},\\ &{F_{G,r}} = 0\left( {r = 4,5,{\text{ }} \cdots ,{\text{ }}10} \right) ,\end{split} $ (24)

式中,$ {B_{b,x}}、{B_{b,y}}、{B_{b,z}} $均为浮力$ {B_b} $在载体坐标系$ \left\{ b \right\} $下的分量。

推进器推力对广义主动力的贡献$ F_{T,r}^{} = T \cdot {\tilde v_{T,r}} $为:

$\begin{gathered} {F_{T,1}} = {Z_4}{Z_6}T,{\text{ }}{F_{T,2}} = {Z_4}{Z_5}T,{\text{ }}{F_{T,3}} = - {Z_3}T, \\ {F_{T,4}} ={F_{T,5}} = {F_{T,6}} = {F_{T,7}} = {F_{T,8}} = 0,\end{gathered} $ (25)

舵对AUV本体的反作用力矩$ {T_{ - i}}\left( {i = 1,2,3,4} \right) $对广义主动力的贡献$ F_{ - i,r}^{} = T_{ - i}^{} \cdot {\tilde \omega _{b,r}} $为:

$ \begin{split} & {F_{ - 1,1}} = {F_{ - 1,2}} = {F_{ - 1,3}} = {F_{ - 1,4}} = {F_{ - 1,7}} = {F_{ - 1,8}} = {F_{ - 1,9}}= \\ & {F_{ - 1,10}} = 0,{\text{ }}{F_{ - 1,5}} = - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 1}} + {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 1}},\\ & {\text{ }}{F_{ - 1,6}} =- {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 1}}\left( {{Z_1}{Z_4} + {Z_2}{Z_4}} \right){F_{ - 2,1}} = {F_{ - 2,2}} =\\ & {F_{ - 2,3}} = {F_{ - 2,4}} = {F_{ - 2,7}} = {F_{ - 2,8}} ={F_{ - 2,9}} = {F_{ - 2,10}} =\\ & 0{F_{ - 2,5}} = {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 2}} + {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 2}},{\text{ }}{F_{ - 2,6}} =\\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 2}}\left( {{Z_1}{Z_4} - {Z_2}{Z_4}} \right) {F_{ - 3,1}} = {F_{ - 3,2}} ={F_{ - 3,3}} = \\ & {F_{ - 3,4}} = {F_{ - 3,7}} = {F_{ - 3,8}} = {F_{ - 3,9}} = {F_{ - 3,10}} = 0,{F_{ - 3,5}} = \\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 3}} - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 3}}, {\text{ }}{F_{ - 3,6}} ={{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 3}}\\ & \left( {{Z_1}{Z_4} + {Z_2}{Z_4}} \right) {F_{ - 4,1}} = {F_{ - 4,2}} = {F_{ - 4,3}} ={F_{ - 4,4}} = \\ & {F_{ - 4,7}} = {F_{ - 4,8}} = {F_{ - 4,9}} = {F_{ - 4,10}} = 0 {F_{ - 4,5}} = \\ & - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_4} - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 4}},{\text{ }}{F_{ - 4,6}} = \\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 4}}\left( { - {Z_1}{Z_4} + {Z_2}{Z_4}} \right) 。\\[-1pt] \end{split} $ (26)

AUV本体的广义主动力为:

$\begin{split} {F_{M,r}} = &{F_{b,r}} + {F_{G,r}} + {F_{B,r}} + {F_{T,r}} + {F_{ - 1,r}} + {F_{ - 2,r}} +\\ & {F_{ - 3,r}} + {F_{ - 4,r}},{\text{ }}\left( {r = 1,2, \cdots ,10} \right)。\end{split} $ (27)
3.2 X舵的动力学分析

$ i $个舵的质量为$ {m_i}\left( {i = 1,2,3,4} \right) $,惯性张量为$ {}^i{I_{i,g}} $,施加在第$ i $个舵上的力主要有惯性力$ F_i^ * $、惯性力矩$ T_i^ * $、重力$ G_i^{} $、浮力$ B_i^{} $、水动力$ F_{{{h}},i}^{} $、水动力矩$ T_{{{h}},i}^{} $,舵机施加在舵上的扭矩$ T_i^{} $(方向为$ {n_{i,y}} $)。重心和浮心重合。

舵的惯性力和惯性矩为:

$ \begin{gathered} F_i^ * = - {m_i}{}^i{a_{ig}} = F_{i,x}^ * {n_{i,x}} + F_{i,y}^ * {n_{i,y}} + F_{i,z}^ * {n_{i,z}} ,\\ T_i^ * = - {}^i{I_{i,g}}{}^i{\alpha _i} - {}^i{\omega _i} \times {}^i{I_{i,g}} \cdot {}^i{\omega _i} = T_{i,x}^ * {n_{i,x}} + T_{i,y}^ * {n_{i,y}} + T_{i,z}^ * {n_{i,z}} 。\end{gathered} $ (28)

式中:$ F_{i,x}^ * 、F_{i,y}^ * 、F_{i,z}^ * $均为惯性力$ F_i^ * $在载体坐标系$ \left\{ i \right\} $下的分量;$ T_{i,x}^ *、T_{i,y}^ * 、T_{i,z}^ * $均为惯性矩$ T_i^ * $在载体坐标系$ \left\{ i \right\} $下的分量。

X舵对广义惯性力的贡献为:

$ F_{X,r}^ * = \sum\limits_{i = 1}^4 {\left( {F_i^ * \cdot {{\tilde v}_{ig,r}} + T_i^ * \cdot {{\tilde \omega }_{i,r}}} \right),\left( {r = 1,2, \cdots ,10} \right)},$ (29)

X舵的重力和浮力对广义主动力的贡献为:

$ F_{{G_X},r}^{} = \sum\limits_{i = 1}^4 {G_i^{} \cdot {{\tilde v}_{ig,r}},\left( {r = 1,2, \cdots ,10} \right)},$ (30)
$ F_{{B_X},r}^{} = \sum\limits_{i = 1}^4 {B_i^{} \cdot {{\tilde v}_{ig,r}},\left( {r = 1,2, \cdots ,10} \right)}。$ (31)

X舵的水动力和水动力矩为:

$ \begin{gathered} {F_{h,i}} = {X_{{\delta _i}{\delta _i}}}\delta _i^2{u^2}{n_x} + {Y_{{\delta _i}}}\delta _i^{}{u^2}{n_y} + {Z_{{\delta _i}}}\delta _i^{}{u^2}{n_z} ,\\ {T_{h,i}} = {K_{{\delta _i}}}\delta _i^{}{u^2}{n_x} + {M_{{\delta _i}}}\delta _i^{}{u^2}{n_y} + {N_{{\delta _i}}}\delta _i^{}{u^2}{n_z}。\end{gathered} $ (32)

式中:$ {X_{{\delta _i}{\delta _i}}}、{Y_{{\delta _i}}}、{Z_{{\delta _i}}}、{K_{{\delta _i}}}、{M_{{\delta _i}}},{N_{{\delta _i}}} $为与舵相关的水动力系数。

X舵的水动力对广义主动力的贡献为:

$ F_{{H_X},r}^{} = \sum\limits_{i = 1}^4 {\left( {F_{h,i}^{} \cdot {{\tilde v}_{ig,r}} + T_{h,i}^{} \cdot {{\tilde \omega }_{i,r}}} \right),\left( {r = 1,2, \cdots ,10} \right)} ,$ (33)

X舵上的扭矩对广义主动力的贡献为:

$ F_{{T_X},r}^{} = \sum\limits_{i = 1}^4 {T_i^{} \cdot {{\tilde \omega }_{i,r}},\left( {r = 1,2, \cdots ,10} \right)},$ (34)

X舵的广义主动力为:

$ {F_{X,r}} = {F_{{G_X},r}} + {F_{{B_X},r}} + {F_{{H_X},r}} + {F_{{T_X},r}},$ (35)

X舵欠驱动AUV的动力学方程为:

$ F_{{{M}},r}^ * + F_{{{X}},r}^ * + F_{{{M}},r}^{} + F_{{{X}},r}^{} = 0{\text{ }}\left( {r = 1,2, \cdots ,10} \right)。$ (36)
4 仿真验证

为了验证模型的有效性,利用Matlab/Simulink中的S函数,求解式(36),状态量为广义坐标,输入为推进器推力、舵角,输出为广义坐标。在Matlab/Simulink环境下设计滑模控制器,搭建仿真验证平台,分别对垂直面(见图3)和水平面(见图4)的路径跟踪问题进行仿真验证,仿真结果与AUV运动规律一致,表明该建模方法有效。

图 3 垂直面路径跟踪 Fig. 3 Path tracking in the vertical plane

图 4 水平面路径跟踪 Fig. 4 Path tracking in the horizontal plane
5 结 语

本文详细介绍偏速度、偏角速度、广义惯性力、广义主动力的计算方法,展示凯恩动力学的建模步骤,推导出X舵欠驱动AUV的凯恩动力学模型。该建模方法分别计算AUV本体和X舵的广义主动力和广义惯性力,可非常方便地添加AUV本体和X舵的相互作用,也可清晰地展示作用在X舵欠驱动AUV上的力对动力学模型的影响。仿真结果表明该建模方法有效。

参考文献
[1]
FENANDES V H, OLIVEIRA J C D, RODRIGUES D D, et al. Semi-autonomous identification of free span in underwater pipeline from data acquired with AUV - Case study[J]. Applied Ocean Research, 2021, 115: 1-10.
[2]
张志强, 于瑞航, 崔银锋. AUV水下移动重力测量建模及误差分析[J]. 数字海洋与水下攻防, 2021, 4(1): 1-6. DOI:10.19838/j.issn.2096-5753.2021.01.001
[3]
徐会希, 姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述[J]. 中国科学院大学学报, 2021, 38(2): 145-151.
[4]
王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 4: 400-406.
WANG T T, ZHANG N N, YUE C Q, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 4: 400-406.
[5]
梁庆卫, 张鑫, 闫晓航. 节点运动对多AUV协同系统全网完成度的影响[J]. 水下无人系统学报, 2021, 29(2): 170-175.
[6]
CHENG C X, SHA Q X, HE B, et al. Path planning and obstacle avoidance for AUV: A review[J]. Ocean Engineering, 2021, 235: 1-14.
[7]
DENG Y J, LIU T, ZHAO D X. Event-triggered output-feedback adaptive tracking control of autonomous underwater vehicles using reinforcement learning[J]. Applied Ocean Research, 2021, 113: 1-8.
[8]
尹欣繁, 车兵辉, 章贵川. 小旋翼无人机建模及航线控制研究[J]. 火力与指挥控制, 2022, 47(2): 140-145. DOI:10.3969/j.issn.1002-0640.2022.02.024
[9]
王林涛, 王健. 四旋翼无人机特种弹药悬停发射动力学研究[J]. 弹道学报, 2022, 34(1): 38-43.
[10]
DO T T, WU V H, LIU Z H. Linearization of dynamic equations for vibration and model analysis of flexible joint manipulators[J]. Mechanism and Machine Theory, 2022, 167: 1-17.
[11]
HUANG H, TANG G Y, CHEN H X, et al. Dynamic modeling and vibration suppression for two-link underwater flexible manipulators[J]. IEEE Access, 2022, 10: 40181-40195. DOI:10.1109/ACCESS.2022.3164706
[12]
孙志伟, 李亚洲, 武志华. 基于拉格朗日方程的Delta机器人动力学分析[J]. 机电工程技术, 2020, 49(9): 120-123. DOI:10.3969/j.issn.1009-9492.2020.09.040
[13]
ZHANG Y L, ZHAO G L, LI H X. Multibody dynamic modeling and controlling for unmanned bicycle system[J]. ISA Transaction, 2021, 118: 174-188. DOI:10.1016/j.isatra.2021.02.014
[14]
CAI Y F, ZHENG S T, LIU W T, et al. Sliding-model control of ship-mounted Stewart platform for wave compensation using velocity feedforward[J]. Ocean Engineering, 2021, 236: 1-10.
[15]
CARUSO M, BREGANT L, GALLINA P, et al. Design and multi-body dynamic analysis of the Archimede space exploration rover[J]. Acta Astronautica, 2022, 194: 229-241. DOI:10.1016/j.actaastro.2022.02.003
[16]
CAO Y H, NIE W S, WANG Z R, et al. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis[J]. Aerospace Science and Technology, 2020, 99: 1-8.
[17]
CIBICIK A, EGELAND O. Kinematics and dynamics of flexible robotic manipulators using dual screws[J]. IEEE Transactions on Robotics, 2021, 37(1): 206-222. DOI:10.1109/TRO.2020.3014519
[18]
张利军, 姜大鹏, 胡忠辉. 水下航行器跟踪控制的非线性理论分析[M]. 北京: 科学出版社, 2019: 39−51.
[19]
夏极, 黄斌. X舵潜艇空间旋回运动控制系统设计[J]. 中国舰船研究, 2020, 15(3): 155-160. DOI:10.19693/j.issn.1673-3185.01501