AUV由于其自主性强、运动灵活等特点,在海洋观测[1 − 3]、水下组网[4,5]、水下目标跟踪[6,7]等领域发挥了重要作用。动力学模型作为机器人研究的一项重要内容,在AUV设计阶段的受力分析、控制算法设计、计算机仿真验证等方面有着重要作用。
文献[8−9]通过N-E(Newton-Euler)方程研究了四旋翼无人机的动力学问题。在建模过程中,将旋翼作为质点,仅提供升力而忽略旋翼自身转动以及旋翼与本体之间的相互作用。文献[10−12]从能量出发,推导出机械手、Delta机器人的L-E(Lagrange-Euler)方程。该方法需计算动能和势能,通过求解二阶微分方程获得最终的动力学模型,计算机求解效率较低。Kane动力学运算效率高、模型结构简单,非常适合处理多刚体建模问题,满足实时控制的需求。该方法已应用在无人自行车[13]、船载Stewart平台[14]、太空探测车[15]、F直升机吊装系统[16]、机械手[17]的动力学建模问题中。
本文将Kane方程应用在X舵欠驱动AUV的动力学建模中,可避免N-E方程建模时,需考虑的舵与AUV本体之间的相互作用力,也不需计算L-E方程建模时用到的动能和势能以及求解二阶微分方程。该方法可清晰地展示哪些力对X舵欠驱动AUV的动力学模型有贡献,也可非常方便地将外界作用力添加到动力学方程中。
1 坐标系与旋转矩阵X舵欠驱动AUV是由本体和X舵组成,坐标系如图1和图2所示。为了便于公式的推导,本文引入Z函数。
AUV本体相对于惯性坐标系的旋转矩阵为:
$\begin{aligned} & {}_b^ER = {\left( {{}_E^bR} \right)^{\mathrm{T}}} = \\ & \left[ {\begin{array}{*{20}{c}} {{Z_4}{Z_6}}&{ - {Z_2}{Z_5} + {Z_1}{Z_3}{Z_6}}&{{Z_1}{Z_5} + {Z_2}{Z_3}{Z_6}} \\ {{Z_4}{Z_5}}&{{Z_2}{Z_6} + {Z_1}{Z_3}{Z_5}}&{ - {Z_1}{Z_6} + {Z_2}{Z_3}{Z_5}} \\ { - {Z_3}}&{{Z_1}{Z_4}}&{{Z_2}{Z_4}} \end{array}} \right]。\end{aligned}$ | (1) |
X舵是由4个独立的舵组成(见图2),
舵1可看作是载体坐标系
X舵欠驱动AUV本体有6个自由度,X舵有4个自由度,因此,广义坐标可写为:
$ q = \left\{ {{x_g},{y_g},{z_g},\phi ,\theta ,\psi ,{\delta _1},{\delta _2},{\delta _3},{\delta _4}} \right\}。$ | (2) |
式中:
$\begin{aligned} & {u_1} = {\dot x_g},{\text{ }}{u_2} = {\dot y_g},{\text{ }}{u_3} = {\dot z_g},{\text{ }}{u_4} = \dot \phi ,{\text{ }}{u_5} = \dot \theta ,\\ & {\text{ }}{u_6} = \dot \psi ,{\text{ }}{u_7} = {\dot \delta _1},{\text{ }}{u_8} = {\dot \delta _2},{\text{ }}{u_9} = {\dot \delta _3},{\text{ }}{u_{10}} = {\dot \delta _4}。\end{aligned}$ | (3) |
AUV本体的角速度在载体坐标系
$\begin{aligned} & {}^b{\omega _b} = p{n_x} + q{n_y} + r{n_z} = \left( {{u_4} - {Z_3}{u_6}} \right){n_x} + \\ & \left( {{Z_2}{u_5} +{Z_1}{Z_4}{u_6}} \right){n_y} + \left( { - {Z_1}{u_5} + {Z_2}{Z_4}{u_6}} \right){n_z}。\end{aligned}$ | (4) |
式中:
由偏角速度的计算公式
$ \begin{split} & {{\tilde \omega }_{b,1}} = 0,{\text{ }}{{\tilde \omega }_{b,2}} = 0,{\text{ }}{{\tilde \omega }_{b,3}} = 0,{\text{ }}{{\tilde \omega }_{b,4}} = {n_x},{\text{ }}{{\tilde \omega }_{b,5}} = \\ & \left( {{Z_2}{n_y} - {Z_1}{n_z}} \right) {{\tilde \omega }_{b,6}} = \left( {{Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z}} \right), \\ & {\text{ }}{{\tilde \omega }_{b,7}} = {{\tilde \omega }_{b,8}} = {{\tilde \omega }_{b,9}} = {{\tilde \omega }_{b,10}} = 0 ,\end{split} $ | (5) |
因此,AUV本体重心处的速度在载体坐标系
$ \begin{gathered} {}^b{v_g} = u{n_x} + v{n_y} + w{n_z} = \left( {{Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3}} \right){n_x} + \\ \left( {{Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3}} \right){n_y} + \left( {{Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3}} \right){n_z} 。\end{gathered} $ | (6) |
式中:
AUV本体浮心处的速度在载体坐标系
$\begin{split} & {}^b{v_c} = {}^b{v_g} + {}^b{\omega_{\text{b}}} \times {}^b{r_{gc}} = [ {Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3} + \\ & {Z_{11}}{u_5} + {Z_{12}}{u_6} ]{n_x} + [ {Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3} -{z_{gc}}{u_4} -\\ & {x_{gc}}{Z_1}{u_5} + {Z_{13}}{u_6} ]{n_y} + [ {Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3} +\\ & {y_{gc}}{u_4} - {x_{gc}}{Z_2}{u_5} - {Z_{14}}{u_6},]{n_z}。\end{split}$ | (7) |
式中:
推进器与本体连接处位于载体坐标系
$ \begin{split} & {}^b{v_T} = {}^b{v_g} + {}^b{\omega _{\text{b}}} \times {}^b{r_{g,T}} = \left[ {{Z_4}{Z_6}{u_1} + {Z_4}{Z_5}{u_2} - {Z_3}{u_3}} \right]{n_x} + \\ & \left[ {{Z_7}{u_1} + {Z_8}{u_2} + {Z_1}{Z_4}{u_3} - {x_{g,T}}{Z_1}{u_5} + {x_{g,T}}{Z_2}{Z_4}{u_6}} \right]{n_y} + \\ & \left[ {{Z_9}{u_1} + {Z_{10}}{u_2} + {Z_2}{Z_4}{u_3} - {x_{g,T}}{Z_2}{u_5} - {x_{g,T}}{Z_1}{Z_4}{u_6}} \right]{n_z} 。\end{split} $ | (8) |
式中,
由偏速度计算公式
$\begin{split} & {{\tilde v}_{c,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{c,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} , {{\tilde v}_{c,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{c,4}} = - {z_{gc}}{n_y} +\\ & {y_{gc}}{n_z} , {{\tilde v}_{c,5}} = {Z_{11}}{n_x} - {x_{gc}}{Z_1}{n_y} - {x_{gc}}{Z_2}{n_z},{\text{ }}{{\tilde v}_{c,6}} = {Z_{12}}{n_x} + \\ &{Z_{13}}{n_y} - {Z_{14}}{n_z}{{\tilde v}_{c,7}} = {\text{ }}{{\tilde v}_{c,8}} = {{\tilde v}_{c,9}} = {{\tilde v}_{c,10}} = 0 。\end{split}$ | (9) |
$\begin{split} & {{\tilde v}_{g,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{g,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} {{\tilde v}_{g,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{g,4}} ={{\tilde v}_{g,5}} = \\ & {{\tilde v}_{g,6}} = {\text{ }}{{\tilde v}_{g,7}} = {\text{ }}{{\tilde v}_{g,8}} = {\text{ }}{{\tilde v}_{g,9}} = {\text{ }}{{\tilde v}_{g,10}} = 0, \end{split}$ | (10) |
$ \begin{split} & {{\tilde v}_{T,1}} = {Z_4}{Z_6}{n_x} + {Z_7}{n_y} + {Z_9}{n_z},{\text{ }}{{\tilde v}_{T,2}} = {Z_4}{Z_5}{n_x} + {Z_8}{n_y} + \\ & {Z_{10}}{n_z} {{\tilde v}_{T,3}} = - {Z_3}{n_x} + {Z_1}{Z_4}{n_y} + {Z_2}{Z_4}{n_z},{\text{ }}{{\tilde v}_{T,5}} = \\ & - {x_{g,T}}{Z_1}{n_y} - {x_{g,T}}{Z_2}{n_z} {{\tilde v}_{T,6}} = {x_{g,T}}{Z_2}{Z_4}{n_y} - \\ &{x_{g,T}}{Z_1}{Z_4}{n_z},{\text{ }}{{\tilde v}_{T,4}} = {\text{ }}{{\tilde v}_{T,7}} = {\text{ }}{{\tilde v}_{T,8}} = {\text{ }}{{\tilde v}_{T,9}} = {\text{ }}{{\tilde v}_{T,10}} = 0 。\end{split} $ | (11) |
AUV本体重心处的加速度的矢量形式为:
$ {}^b{a_g} = \frac{{{\mathrm{d}}{}^b{v_g}}}{{{\mathrm{d}}t}} = {Z_{15}}{n_x} + {Z_{16}}{n_y} + {Z_{17}}{n_z} 。$ | (12) |
式中:
AUV本体角加速度的矢量形式为:
$ {}^b{\alpha _b} = \frac{{{\mathrm{d}}{}^b{\omega _b}}}{{{\mathrm{d}}t}} = {Z_{18}}{n_x} + {Z_{19}}{n_y} + {Z_{20}}{n_z}。$ | (13) |
式中:
X舵的角速度分别为:
$\begin{split} & {}^i{\omega _i} = {}_b^iR{}^b{\omega _b} + {\dot \delta _i}{n_{i,y}} = {}^i{\omega _{i,x}}{n_{i,x}} +\\ & {}^i{\omega _{i,y}}{n_{i,y}} + {}^i{\omega _{i,z}}{n_{i,z}}\left( {i = 1,2,3,4} \right)。\end{split} $ | (14) |
式中:
偏角速度可表示为:
$ {\tilde \omega _{i,r}} = {{\partial {}^i{\omega _i}} / {\partial {u_r}}}{\text{ }}\left( {i = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4} \right),$ | (15) |
X舵重心处的速度为:
$ \begin{split} ^iv_{ig}=& {}_b^iR^bv_g+_b^iR\left(^b\omega\times^br_{g,O_i}\right)+^i\omega_i\times^ir_{O_i,ig}= \\ &{} ^iv_{ig,x}n_{i,x}+^iv_{ig,y}n_{i,y}+^iv_{ig,z}n_{i,z}\left(i=1,2,3,4\right)。\end{split} $ | (16) |
式中:
X舵重心处的偏速度为:
$ {\tilde v_{ig,r}} = {{\partial {}^i{v_{ig}}} \mathord{\left/ {\vphantom {{\partial {}^i{v_{ig}}} {\partial {u_r}}}} \right. } {\partial {u_r}}},\left( {i = 1,2,3,4} \right),$ | (17) |
舵的角加速度为:
$ {}^i{\alpha _i} = \frac{{{\mathrm{d}}{}^i{\omega _i}}}{{{\mathrm{d}}t}} = {}^i{\alpha _{i,x}}{n_{i,x}} + {}^i{\alpha _{i,y}}{n_{i,y}} + {}^i{\alpha _{i,z}}{n_{i,z}},\left( {i = 1,2,3,4} \right)。$ | (18) |
式中:
舵重心处的加速度为:
$ {}^i{a_{ig}} = \frac{{{\mathrm{d}}{}^i{v_{ig}}}}{{{\mathrm{d}}t}} = {}^i{a_{ig,x}}{n_{i,x}} + {}^i{a_{ig,y}}{n_{i,y}} + {}^i{a_{ig,z}}{n_{i,z}},\left( {i = 1,2,3,4} \right)。$ | (19) |
式中:
AUV本体的质量为
AUV本体的惯性力和惯性矩为:
$ \begin{gathered} F_b^ * = - {m_b}{}^b{a_g} = F_{b,x}^ * {n_x} + F_{b,y}^ * {n_y} + F_{b,z}^ * {n_z} ,\\ T_b^ * = - {}^b{I_b}{}^b{\alpha _b} - {}^b{\omega _b} \times {}^b{I_b} \cdot {}^b{\omega _b} = T_{b,x}^ * {n_x} + T_{b,y}^ * {n_y} + T_{b,z}^ * {n_z} 。\end{gathered} $ | (20) |
式中:
AUV本体的惯性力和惯性矩对广义惯性力的贡献
$ \begin{split} & F_{M,1}^ * = {Z_4}{Z_6}F_{b,x}^ * + {Z_7}F_{b,y}^ * + {Z_9}F_{b,z}^ * ,{\text{ }}F_{M,2}^ * = {Z_4}{Z_5}F_{b,x}^ * + \\ & {Z_8}F_{b,y}^ * + {Z_{10}}F_{b,z}^ * F_{M,3}^ * = - {Z_3}F_{b,x}^ * + {Z_1}{Z_4}F_{b,y}^ * + {Z_2}{Z_4}F_{b,z}^ * , \\ &{\text{ }}F_{M,4}^ * = T_{b,x}^ * ,{\text{ }}F_{M,5}^ * = {Z_2}T_{b,y}^ * - {Z_1}T_{b,z}^ * F_{M,6}^ * ={Z_1}{Z_4}T_{b,y}^ * +\\ & {Z_2}{Z_4}T_{b,z}^ * ,{\text{ }}F_{M,7}^ * = F_{M,8}^ * = F_{M,9}^ * = F_{M,10}^ * = 0。\\[-1pt] \end{split} $ | (21) |
施加在AUV本体上的水动力和水动力矩对广义主动力的贡献
$ \begin{split} & {F_{{{b}},1}} = {Z_4}{Z_6}{F_{b,x}} + {Z_7}{F_{b,y}} + {Z_9}{F_{b,z}},{\text{ }}{F_{b,2}} = {Z_4}{Z_5}{F_{b,x}} + \\ & {Z_8}{F_{b,y}} + {Z_{10}}{F_{b,z}}{F_{b,3}} = - {Z_3}{F_{b,x}} + {Z_1}{Z_4}{F_{b,y}} + {Z_2}{Z_4}{F_{b,z}},\\ & {F_{h,4}} = {T_{b,x}},{F_{b,5}} = {Z_2}{T_{b,y}} - {Z_1}{T_{b,z}}{F_{b,6}} = {Z_1}{Z_4}{T_{b,y}} +\\ &{Z_2}{Z_4}{T_{b,z}},{\text{ }}{F_{b,7}} = {F_{b,8}} = {F_{b,8}} = {F_{b,10}} = 0 。\end{split} $ | (22) |
AUV本体重力对广义主动力的贡献
$ \begin{split} &{F_{G,1}} = {Z_4}{Z_6}{G_{b,x}} + {Z_7}{G_{b,y}} + {Z_9}{G_{b,z}},{\text{ }}{F_{G,2}} = {Z_4}{Z_5}{G_{b,x}} + \\ & {Z_8}{G_{b,y}} + {Z_{10}}{G_{b,z}}{F_{G,3}} = - {Z_3}{G_{b,x}} + {Z_1}{Z_4}{G_{b,y}} + {Z_2}{Z_4}{G_{b,z}},\\ &{\text{ }}{F_{G,r}} = 0\left( {r = 4,{\text{ }}5,{\text{ }} \cdots ,{\text{ }}10} \right) ,\\[-1pt] \end{split} $ | (23) |
式中,
AUV本体浮力对广义主动力的贡献
$ \begin{split} & {F_{B,1}} = {Z_4}{Z_6}{B_{b,x}} + {Z_7}{B_{b,y}} + {Z_9}{B_{b,z}},{\text{ }}{F_{B,2}} = {Z_4}{Z_5}{B_{b,x}} + \\ & {Z_8}{B_{b,y}} + {Z_{10}}{B_{b,z}} {F_{B,3}} = - {Z_3}{B_{b,x}} + {Z_1}{Z_4}{B_{b,y}} + {Z_2}{Z_4}{B_{b,z}},\\ &{F_{G,r}} = 0\left( {r = 4,5,{\text{ }} \cdots ,{\text{ }}10} \right) ,\end{split} $ | (24) |
式中,
推进器推力对广义主动力的贡献
$\begin{gathered} {F_{T,1}} = {Z_4}{Z_6}T,{\text{ }}{F_{T,2}} = {Z_4}{Z_5}T,{\text{ }}{F_{T,3}} = - {Z_3}T, \\ {F_{T,4}} ={F_{T,5}} = {F_{T,6}} = {F_{T,7}} = {F_{T,8}} = 0,\end{gathered} $ | (25) |
舵对AUV本体的反作用力矩
$ \begin{split} & {F_{ - 1,1}} = {F_{ - 1,2}} = {F_{ - 1,3}} = {F_{ - 1,4}} = {F_{ - 1,7}} = {F_{ - 1,8}} = {F_{ - 1,9}}= \\ & {F_{ - 1,10}} = 0,{\text{ }}{F_{ - 1,5}} = - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 1}} + {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 1}},\\ & {\text{ }}{F_{ - 1,6}} =- {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 1}}\left( {{Z_1}{Z_4} + {Z_2}{Z_4}} \right){F_{ - 2,1}} = {F_{ - 2,2}} =\\ & {F_{ - 2,3}} = {F_{ - 2,4}} = {F_{ - 2,7}} = {F_{ - 2,8}} ={F_{ - 2,9}} = {F_{ - 2,10}} =\\ & 0{F_{ - 2,5}} = {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 2}} + {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 2}},{\text{ }}{F_{ - 2,6}} =\\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 2}}\left( {{Z_1}{Z_4} - {Z_2}{Z_4}} \right) {F_{ - 3,1}} = {F_{ - 3,2}} ={F_{ - 3,3}} = \\ & {F_{ - 3,4}} = {F_{ - 3,7}} = {F_{ - 3,8}} = {F_{ - 3,9}} = {F_{ - 3,10}} = 0,{F_{ - 3,5}} = \\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_{ - 3}} - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 3}}, {\text{ }}{F_{ - 3,6}} ={{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 3}}\\ & \left( {{Z_1}{Z_4} + {Z_2}{Z_4}} \right) {F_{ - 4,1}} = {F_{ - 4,2}} = {F_{ - 4,3}} ={F_{ - 4,4}} = \\ & {F_{ - 4,7}} = {F_{ - 4,8}} = {F_{ - 4,9}} = {F_{ - 4,10}} = 0 {F_{ - 4,5}} = \\ & - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_2}{T_4} - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{Z_1}{T_{ - 4}},{\text{ }}{F_{ - 4,6}} = \\ & {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. } 2}{T_{ - 4}}\left( { - {Z_1}{Z_4} + {Z_2}{Z_4}} \right) 。\\[-1pt] \end{split} $ | (26) |
AUV本体的广义主动力为:
$\begin{split} {F_{M,r}} = &{F_{b,r}} + {F_{G,r}} + {F_{B,r}} + {F_{T,r}} + {F_{ - 1,r}} + {F_{ - 2,r}} +\\ & {F_{ - 3,r}} + {F_{ - 4,r}},{\text{ }}\left( {r = 1,2, \cdots ,10} \right)。\end{split} $ | (27) |
第
舵的惯性力和惯性矩为:
$ \begin{gathered} F_i^ * = - {m_i}{}^i{a_{ig}} = F_{i,x}^ * {n_{i,x}} + F_{i,y}^ * {n_{i,y}} + F_{i,z}^ * {n_{i,z}} ,\\ T_i^ * = - {}^i{I_{i,g}}{}^i{\alpha _i} - {}^i{\omega _i} \times {}^i{I_{i,g}} \cdot {}^i{\omega _i} = T_{i,x}^ * {n_{i,x}} + T_{i,y}^ * {n_{i,y}} + T_{i,z}^ * {n_{i,z}} 。\end{gathered} $ | (28) |
式中:
X舵对广义惯性力的贡献为:
$ F_{X,r}^ * = \sum\limits_{i = 1}^4 {\left( {F_i^ * \cdot {{\tilde v}_{ig,r}} + T_i^ * \cdot {{\tilde \omega }_{i,r}}} \right),\left( {r = 1,2, \cdots ,10} \right)},$ | (29) |
X舵的重力和浮力对广义主动力的贡献为:
$ F_{{G_X},r}^{} = \sum\limits_{i = 1}^4 {G_i^{} \cdot {{\tilde v}_{ig,r}},\left( {r = 1,2, \cdots ,10} \right)},$ | (30) |
$ F_{{B_X},r}^{} = \sum\limits_{i = 1}^4 {B_i^{} \cdot {{\tilde v}_{ig,r}},\left( {r = 1,2, \cdots ,10} \right)}。$ | (31) |
X舵的水动力和水动力矩为:
$ \begin{gathered} {F_{h,i}} = {X_{{\delta _i}{\delta _i}}}\delta _i^2{u^2}{n_x} + {Y_{{\delta _i}}}\delta _i^{}{u^2}{n_y} + {Z_{{\delta _i}}}\delta _i^{}{u^2}{n_z} ,\\ {T_{h,i}} = {K_{{\delta _i}}}\delta _i^{}{u^2}{n_x} + {M_{{\delta _i}}}\delta _i^{}{u^2}{n_y} + {N_{{\delta _i}}}\delta _i^{}{u^2}{n_z}。\end{gathered} $ | (32) |
式中:
X舵的水动力对广义主动力的贡献为:
$ F_{{H_X},r}^{} = \sum\limits_{i = 1}^4 {\left( {F_{h,i}^{} \cdot {{\tilde v}_{ig,r}} + T_{h,i}^{} \cdot {{\tilde \omega }_{i,r}}} \right),\left( {r = 1,2, \cdots ,10} \right)} ,$ | (33) |
X舵上的扭矩对广义主动力的贡献为:
$ F_{{T_X},r}^{} = \sum\limits_{i = 1}^4 {T_i^{} \cdot {{\tilde \omega }_{i,r}},\left( {r = 1,2, \cdots ,10} \right)},$ | (34) |
X舵的广义主动力为:
$ {F_{X,r}} = {F_{{G_X},r}} + {F_{{B_X},r}} + {F_{{H_X},r}} + {F_{{T_X},r}},$ | (35) |
X舵欠驱动AUV的动力学方程为:
$ F_{{{M}},r}^ * + F_{{{X}},r}^ * + F_{{{M}},r}^{} + F_{{{X}},r}^{} = 0{\text{ }}\left( {r = 1,2, \cdots ,10} \right)。$ | (36) |
为了验证模型的有效性,利用Matlab/Simulink中的S函数,求解式(36),状态量为广义坐标,输入为推进器推力、舵角,输出为广义坐标。在Matlab/Simulink环境下设计滑模控制器,搭建仿真验证平台,分别对垂直面(见图3)和水平面(见图4)的路径跟踪问题进行仿真验证,仿真结果与AUV运动规律一致,表明该建模方法有效。
本文详细介绍偏速度、偏角速度、广义惯性力、广义主动力的计算方法,展示凯恩动力学的建模步骤,推导出X舵欠驱动AUV的凯恩动力学模型。该建模方法分别计算AUV本体和X舵的广义主动力和广义惯性力,可非常方便地添加AUV本体和X舵的相互作用,也可清晰地展示作用在X舵欠驱动AUV上的力对动力学模型的影响。仿真结果表明该建模方法有效。
[1] |
FENANDES V H, OLIVEIRA J C D, RODRIGUES D D, et al. Semi-autonomous identification of free span in underwater pipeline from data acquired with AUV - Case study[J]. Applied Ocean Research, 2021, 115: 1-10. |
[2] |
张志强, 于瑞航, 崔银锋. AUV水下移动重力测量建模及误差分析[J]. 数字海洋与水下攻防, 2021, 4(1): 1-6. DOI:10.19838/j.issn.2096-5753.2021.01.001 |
[3] |
徐会希, 姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述[J]. 中国科学院大学学报, 2021, 38(2): 145-151. |
[4] |
王亭亭, 张南南, 岳才谦, 等. 基于水声通信的AUV组网与协同导航[J]. 水下无人系统学报, 2021, 4: 400-406. WANG T T, ZHANG N N, YUE C Q, et al. AUV networking and cooperative navigation based on underwater acoustic communication[J]. Journal of Unmanned Undersea Systems, 2021, 4: 400-406. |
[5] |
梁庆卫, 张鑫, 闫晓航. 节点运动对多AUV协同系统全网完成度的影响[J]. 水下无人系统学报, 2021, 29(2): 170-175. |
[6] |
CHENG C X, SHA Q X, HE B, et al. Path planning and obstacle avoidance for AUV: A review[J]. Ocean Engineering, 2021, 235: 1-14. |
[7] |
DENG Y J, LIU T, ZHAO D X. Event-triggered output-feedback adaptive tracking control of autonomous underwater vehicles using reinforcement learning[J]. Applied Ocean Research, 2021, 113: 1-8. |
[8] |
尹欣繁, 车兵辉, 章贵川. 小旋翼无人机建模及航线控制研究[J]. 火力与指挥控制, 2022, 47(2): 140-145. DOI:10.3969/j.issn.1002-0640.2022.02.024 |
[9] |
王林涛, 王健. 四旋翼无人机特种弹药悬停发射动力学研究[J]. 弹道学报, 2022, 34(1): 38-43. |
[10] |
DO T T, WU V H, LIU Z H. Linearization of dynamic equations for vibration and model analysis of flexible joint manipulators[J]. Mechanism and Machine Theory, 2022, 167: 1-17. |
[11] |
HUANG H, TANG G Y, CHEN H X, et al. Dynamic modeling and vibration suppression for two-link underwater flexible manipulators[J]. IEEE Access, 2022, 10: 40181-40195. DOI:10.1109/ACCESS.2022.3164706 |
[12] |
孙志伟, 李亚洲, 武志华. 基于拉格朗日方程的Delta机器人动力学分析[J]. 机电工程技术, 2020, 49(9): 120-123. DOI:10.3969/j.issn.1009-9492.2020.09.040 |
[13] |
ZHANG Y L, ZHAO G L, LI H X. Multibody dynamic modeling and controlling for unmanned bicycle system[J]. ISA Transaction, 2021, 118: 174-188. DOI:10.1016/j.isatra.2021.02.014 |
[14] |
CAI Y F, ZHENG S T, LIU W T, et al. Sliding-model control of ship-mounted Stewart platform for wave compensation using velocity feedforward[J]. Ocean Engineering, 2021, 236: 1-10. |
[15] |
CARUSO M, BREGANT L, GALLINA P, et al. Design and multi-body dynamic analysis of the Archimede space exploration rover[J]. Acta Astronautica, 2022, 194: 229-241. DOI:10.1016/j.actaastro.2022.02.003 |
[16] |
CAO Y H, NIE W S, WANG Z R, et al. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis[J]. Aerospace Science and Technology, 2020, 99: 1-8. |
[17] |
CIBICIK A, EGELAND O. Kinematics and dynamics of flexible robotic manipulators using dual screws[J]. IEEE Transactions on Robotics, 2021, 37(1): 206-222. DOI:10.1109/TRO.2020.3014519 |
[18] |
张利军, 姜大鹏, 胡忠辉. 水下航行器跟踪控制的非线性理论分析[M]. 北京: 科学出版社, 2019: 39−51.
|
[19] |
夏极, 黄斌. X舵潜艇空间旋回运动控制系统设计[J]. 中国舰船研究, 2020, 15(3): 155-160. DOI:10.19693/j.issn.1673-3185.01501 |