﻿ 高海况下船舶动力定位混合控制器开发
 舰船科学技术  2023, Vol. 45 Issue (24): 141-144    DOI: 10.3404/j.issn.1672-7649.2023.24.026 PDF

Development of hybrid controller for ship dynamic positioning under high sea conditions
SU Wen-ming
Jiangsu Maritime Institute, Nanjing 211170, China
Abstract: In the development of Marine resources, the ship dynamic positioning accuracy is very important. The traditional positioning anchoring technology is affected by many factors such as sea depth, ocean current, sea wave and sea wind, so it is difficult to meet the control requirements. In this paper, a ship dynamic positioning hybrid controller based on improved PID algorithm, neural network algorithm and fuzzy control algorithm is proposed. The overall structure of the hybrid controller is designed, and the improved PID algorithm controller, neural network controller and fuzzy controller in the hybrid controller are designed and simulated in detail. The ship dynamic positioning hybrid controller designed in this paper can predict and follow the interference signal, and can adapt to the fast response control, so it has greater practicality and advancement.
Key words: high sea state     dynamic positioning     hybrid controllers     fuzzy control
0 引　言

1 高海况下船舶动力学模型分析 1.1 船舶耐波坐标系

 图 1 船舶耐波坐标系 Fig. 1 Ship seakeeping coordinate system

1.2 动力学模型分析

 $\begin{split} \alpha =& {\omega _1}[u + wq - vr] - {X_{a}}\left( {{{q}^2} + {{r}^2}} \right) + {Y_{a}}(pq - r) + \\ &{Z_a}(pr + q)\beta = {\omega _2}[v + wp - ur] - {Y_{a}}\left( {{p^2} + {{\rm{r}}^2}} \right) + \\ &{Z_{a}}(qr - p) + {X_a}(qp + r)r = {\omega _3}[w + vp - uq] - \\ &{Z_{a}}\left( {{{p}^2} + {{q}^2}} \right) + {X_{a}}(rp - q) + {Y_a}(rq + p)\delta = \\ &{\omega _4}(w + vp - uq) + {I_{xy}}(pr - q) + \left( {{r^2} - {q^2}} \right){I_{yz}} - \\ &(r + pq){I_{xz}}\varepsilon = {\omega _5}[u + wq - vr] + {I_{yz}}(qp - r) + \\ &\left( {{p^2} - {r^2}} \right){I_{xz}} - (p + qr){I_{xy}}\xi = {\omega _6}[v + ur - wp] + \\ &{I_{xz}}(qr - p) + \left( {{q^2} - {p^2}} \right){I_{xy}} - (q + rp){I_{xz}}。\end{split}$ (1)

2 船舶动力定位混合控制器开发 2.1 动力定位混合控制器结构设计

 图 2 动力定位混合控制器结构 Fig. 2 Dynamic positioning hybrid controller structure

2.2 算法控制器设计

1）改进PID算法控制器

 图 3 改进PID算法控制器仿真效果 Fig. 3 Improve the simulation effect of PID algorithm controller

2）神经网络控制器

 $\Delta y= {y} - y_d \text{。}$

 $y = f(x) + bu \text{。}$

 $\dot{V}=\text{sgn}({{b}})e(\frac{f(x)-{f}_{d}({x}_{d})}{b}+u) 。$

 图 4 神经网络控制器仿真结果 Fig. 4 Neural network controller simulation results

3）模糊控制器

 图 5 模糊控制器结构 Fig. 5 structure of fuzzy controller

 图 6 模糊控制仿真结果 Fig. 6 Fuzzy controller simulation results

3 结　语

1）设计船舶动力定位混合控制器需要建立高海况下的船舶耐波坐标系以及动力学模型；

2）本文设计的船舶动力定位混合控制器能够实现对干扰信号的预测和跟随，且能够适应快速响应控制，因而具有较大的实用性。

 [1] 骆寒冰, 李元芳, 谢芃, 等. 专家PID与SQP算法在动力定位船模试验中的应用[J]. 中国海洋平台, 2021, 36(5): 18-22. LUO Han-bing, LI Yuan-fang, XIE Peng, et al. Application of expert PID and SQP algorithm in dynamic positioning ship model test[J]. China Offshore Platforms, 2021, 36(5): 18-22. [2] 贺广健, 刘海波, 宫勋, 等. 基于有限时间超螺旋滑模控制的船舶动力定位控制律设计[J]. 长春理工大学学报(自然科学版), 2022, 45(6): 1-9. HE Guang-jian, LIU Hai-bo, GONG Xun, et al. Design of ship dynamic positioning control law based on finite time superspiral sliding mode control[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2022, 45(6): 1-9. [3] 郑大明, 方诚. 考虑未知死区输入的船舶鲁棒自适应动力定位控制[J]. 中国航海, 2021, 44(2): 21-26. ZHENG Da-ming, FANG Cheng. Ship robust adaptive dynamic positioning control considering unknown dead zone input[J]. Navigation of China, 2021, 44(2): 21-26. [4] 于子文, 魏新江. 船舶动力定位系统的复合抗干扰控制[J]. 鲁东大学学报(自然科学版), 2023, 39(1): 42-49. YU Zi-wen, WEI Xin-jiang. Compound anti-interference control of Ship dynamic positioning System[J]. Journal of Ludong University (Natural Science Edition), 2023, 39(1): 42-49. [5] 孟一平. 带有广义噪声的船舶动力定位系统控制器设计[D]. 大连:大连海事大学, 2022. [6] 杨锡明. 模糊系统的容错控制及船舶动力定位应用[D]. 大连:大连海事大学, 2022.