﻿ 船舶行驶过程沉量可靠性预测研究
 舰船科学技术  2023, Vol. 45 Issue (24): 85-88    DOI: 10.3404/j.issn.1672-7649.2023.24.015 PDF

Research on reliability prediction for sediment during ship operation
WANG Dan
Beibu Gulf University, Qinzhou 535011, China
Abstract: This article analyzes the driving process of ships, focusing on constructing mathematical models of ship motion and analyzing the sinking amount of the ship. Based on CFD technology, numerical analysis of ship sinking was conducted, and ship resistance numerical simulation curves and ship sinking numerical simulation curves were provided. At the same time, the relationship between ship sinking and flow velocity was explored. Using linear regression method to predict the sinking of ships, with a focus on linear regression fitting prediction of the relationship between the sinking of the ship's middle and stern and the initial longitudinal inclination of the ship.
Key words: ship running     sediment reliability     forecasting
0 引　言

1 船舶航行过程分析 1.1 船舶运动学模型的构建

 ${\lambda _H} = \frac{{2d}}{L}\text{。}$ (1)

 $L = \frac{{{C_L}\rho {V^2}Ld}}{2} \approx \frac{{{C_L}\rho {V^2}Ld}}{2}\text{。}$ (2)

 ${C_L} = \frac{{2{\text{π}} }}{{1 + \frac{2}{{{\lambda _H}}}}}\left| \beta \right|\text{。}$ (3)

 $\left\{ {\begin{array}{*{20}{l}} {X = m\left( {\dot u - vr} \right)}\text{,} \\ {Y = m\left( {\dot v + ur} \right)} \text{,}\\ {N = Y \cdot {x_C} + {I_{zz}}\dot r} \text{。} \end{array}} \right.$ (4)

 ${X_H} = X\left( u \right) + {X_{vv}}{v^2} + {X_{vr}}vr + {X_{rr}}{r^2}\text{。}$ (5)

 $\left\{ {\begin{array}{*{20}{l}} {X\left( u \right) = \dfrac{1}{2}\rho {V^2}Ld{{X'}_{uu}}{{u'}^2}} \text{，}\\ {{{X'}_{uu}}{{u'}^2} = \dfrac{S}{{Ld}}{C_{dh}}} \text{。} \end{array}} \right.$ (6)

 $\frac{{{C_{dh}}}}{{{C_\infty }}} = A + \frac{B}{{h/d}}\text{。}$ (7)

 $\hat A = 1 + 0.97{F_h} - 1.592F_h^2\text{，}$ (8)
 $\hat B = - 121.87{F_h} + 585.9F_h^2 - 928.4F_h^3\text{。}$ (9)

 $y = 1 + 0.47\frac{d}{h} - 1.7{\left( {\frac{d}{h}} \right)^2} + 6.6{\left( {\frac{d}{h}} \right)^3}\text{。}$ (10)

 ${F_a} = \frac{1}{2}{\rho _a}{C_a}v_a^2\left( {{A_a}{{\cos }^2}\theta + {B_a}{{\sin }^2}\theta } \right)\text{。}$ (11)
1.2 船体下沉量分析

 图 1 船舶下沉量随速度变化曲线 Fig. 1 Curve of ship sinking with speed

 ${F_{nh}} = \frac{V}{{\sqrt {gh} }}\text{，}$ (12)
 $\frac{s}{L} = {C_s}\frac{{F_{nh}^2}}{{\sqrt {\left| {1 - F_{nh}^2} \right|} }}\text{，}$ (13)
 $\frac{t}{L} = {C_t}\frac{{F_{nh}^2}}{{\sqrt {\left| {1 - F_{nh}^2} \right|} }}\text{。}$ (14)
2 船舶下沉量数值分析

 图 2 船舶阻力数值模拟曲线 Fig. 2 Numerical simulation curve of ship resistance

 图 3 船舶下沉量数值模拟曲线 Fig. 3 Numerical simulation curve of ship sinking

 $S = \left( {61.7 \cdot {C_B}\frac{B}{L} - 0.6} \right) \cdot \frac{{F_{rh}^2}}{{\sqrt {1 - F_{rh}^2} }}\text{。}$ (15)

 图 4 船舶下沉量和流速之间的关系 Fig. 4 The relationship between ship sinking and flow velocity

 图 5 船体下沉量随水深吃水比的变化曲线 Fig. 5 Curve of the variation of ship sinking with water depth and draft ratio
3 船舶下沉量可靠性预测

 ${S'_{{M_0}}} = \frac{{{S_{{M_0}}}}}{d}\text{。}$ (16)

 图 6 船中下沉量随纵倾角的变化曲线 Fig. 6 Curve of the variation of the sinking amount in the ship with the longitudinal inclination angle
 $\Delta {S'_M} = a \cdot \varphi _0^3 + b \cdot \varphi _0^2 + c \cdot {\varphi _0}\text{。}$ (17)

 $c = 39.1 \cdot {e^{ - 7.78 \cdot \frac{h}{d}}} + 0.009 \cdot {e^{ - 0.69 \cdot \frac{h}{d}}}\text{。}$ (18)

 图 7 船尾下沉量随纵倾角变化曲线 Fig. 7 Curve of stern settlement with longitudinal inclination angle
 $\Delta {S'_\varphi } = k_1 \cdot {\varphi _0}\text{。}$ (19)

 $k_1 = 0.001\;9 \cdot {\left( {\frac{h}{d}} \right)^{ - 1.085}} + 0.000\;187\text{。}$ (20)
4 结　语

 [1] 丁水汀, 宋越, 杜发荣, 等. 柴-燃混合循环系统发展综述及航空适用分析[J]. 北京理工大学学报, 2023(43): 1-17. DING Shui-ting, SONG Yue, DU Fa-rong, et al. Review of combined cycle power system and analysis of key research points for aviation application[J]. Transactions of Beijing Institute of Technology, 2023(43): 1-17. [2] 冯德银. 大型船舶行驶过程沉量可靠性预测[J]. 船舶科学技术, 2018(40): 40-42. FENG De-yin. Reliability prediction of heavy load on large ships[J]. Ship Science and Technology, 2018(40): 40-42. [3] 严心池, 安伟光, 陈卫东, 等. 大型船舶结构的可靠性研究[J]. 哈尔滨工程大学学报, 2004(25): 147-152. YAN Xin-chi, AN Wei-guang, CHEN Wei-dong, et al. reliability analysis for large ship structure[J]. Journal of Harbin Engineering University, 2004(25): 147-152. [4] 沈建国. 非线性回归分析的船舶装备动态环境模拟研究[J]. 船舶科学技术, 2020(42): 214-216. SHEN Jian-guo. Research on dynamic environment simulation of ship equipment by nonlinear regression analysis[J]. Ship Science and Technology, 2020(42): 214-216. [5] 郭兴华, 李伟, 刘芳武, 等. 基于数据挖掘的船舶航线自动控制技术[J]. 船舶科学技术, 2022(44): 132-135. GUO Xing-hua, LI Wei, LIU Fang-wu, et al. Research on automatic control technology of ship navigation line based on data mining[J]. Ship Science and Technology, 2022(44): 132-135. [6] 刘学军, 田树科. 船舶电力系统中DC-DC变换器的建模与控制[J]. 船舶科学技术, 2019(41): 94-96. LIU Xue-jun, TIAN Shu-ke. Research on modeling and control of DC-DC converter in ship power system[J]. Ship Science and Technology, 2019(41): 94-96. [7] 鲁晓丽, 赵泽旭, 史英杰. 现代统计学理论的船舶交通数据特征分析[J]. 船舶科学技术, 2018(40): 31-33. LU Xiao-li, ZHAO Ze-xu, SHI Ying-jie. Characteristics analysis of ship and ship traffic data based on modern statistical theory[J]. Ship Science and Technology, 2018(40): 31-33.