﻿ 邮轮支柱连接节点极限状态研究与可靠性分析
 舰船科学技术  2023, Vol. 45 Issue (24): 68-73    DOI: 10.3404/j.issn.1672-7649.2023.24.012 PDF

1. 天津大学 水利仿真与安全国家重点实验室，天津 300072;
2. 天津大学 天津市港口与海洋工程重点实验室，天津 300072

Prediction of ultimate bearing capacity and reliability analysis of cruise combined pillar structure
YU Yang1,2, ZHANG Jing-rui1,2, YU Jian-xing1,2, LI Hao-da1,2, LIU Xin1,2, LIU Peng-fei1,2, SUN Ruo-ke1,2, HUANG Kai-hang1,2
1. State Key Laboratory of Hydraulic Engineering Simulation and safety, Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of port and Ocean Engineering, Tianjin University, Tianjin 300072, China
Abstract: In order to study the limit state and reliability of column connection joints, a large number of finite element models of column connection joints are established in this paper, and the influence of member size on the failure mode and bearing capacity of the structure in the limit state is analyzed. Through nonlinear regression analysis of the calculation results of the finite element model, the formula for calculating the ultimate bearing capacity of the structure considering the size of important members is obtained. On this basis, the limit state function of the column connection node is established by using the above formula to form the reliability analysis process of the structure. Finally, the applicability of the reliability analysis process is verified by an example. The research results can provide a certain degree of reference for the design of connection nodes of luxury cruise ship pillars.
Key words: liner     column connection node     finite element     limit state     reliability
0 引　言

1 支柱连接节点模型的建立与验证

 图 1 支柱连接节点模型细节 Fig. 1 Details of column connection node model

2 支柱连接节点各构件尺寸对结构极限状态的影响 2.1 构件尺寸对支柱连接节点失效模式的影响

 图 2 不同T型材腹板厚度下支柱连接节点极限应力云图 Fig. 2 Cloud chart of ultimate stress of column connection node under different T-section web thickness

 图 3 不同上支柱与下支柱直径比下支柱连接节点极限应力云图 Fig. 3 Cloud chart of ultimate stress of column connection node under different diameter ratios of upper and lower columns

 图 4 不同甲板厚度支柱连接节点极限应力云图 Fig. 4 Cloud chart of ultimate stress of column connection node with different deck thickness
2.2 构件尺寸对支柱连接节点极限承载力的影响

 图 5 不同构件尺寸对支柱连接节点极限承载力的影响 Fig. 5 Effect of different member sizes on ultimate bearing capacity of column connection joints

3 支柱连接节点极限承载力预测

 $\alpha = \frac{T}{H}，$ (1)
 $\lambda = \frac{{{D_1}}}{{{D_2}}} ，$ (2)
 $\beta {\text{ = }}\left(\frac{l}{t}\right)\sqrt {\frac{{{\sigma _y}}}{E}}。$ (3)

 $\frac{R}{{A{\sigma _{{y}}}}} = {b_1}\alpha _{}^{{b_1}}\lambda _{}^{{b_2}}{\beta ^{{b_3}}} 。$ (4)

 $R = 3.413A{\sigma _{{y}}}\alpha _{}^{0.33}\lambda _{}^{( - 0.043)}{\beta ^{\left( { - 0.023} \right)}} 。$ (5)

 图 6 有限元模型计算结果曲线与公式预测结果曲线对比图 Fig. 6 Comparison between the calculated result curve of finite element model and the predicted result curve of formula
4 支柱连接节点可靠性分析流程与实例 4.1 支柱连接节点可靠性分析流程

 $Z = g\left( {S,R} \right) = R - S。$ (6)

 $S = 7.06{\text{ab}}h + P。$ (7)

 $\begin{split} Z=& R-S=3.413A{\sigma }_{\text{y}}{\left(\frac{T}{H}\right)}^{0.33}{\left(\frac{{D}_{1}}{{D}_{2}}\right)}^{（-0.043）}\times \\ & {\left(\text{(}\frac{\text{l}}{t})\sqrt{\frac{{\sigma }_{y}}{E}}\right)}^{\left(-0.023\right)}-7.06\text{ab}h-P 。\end{split}$ (8)

4.2 支柱连接节点可靠性分析实例

5 结　语

1）随着T型材腹板板厚、上支柱与下支柱直径比和甲板厚度等构件尺寸的变化，支柱连接节点的失效模式也会产生一定程度的变化，且每种构件尺寸的改变都会对结构失效模式产生不同的影响。

2）增加T型材腹板厚度、甲板厚度会提升支柱连接节点极限承载力；随着上支柱与下支柱直径比的减小，支柱连接节点的极限承载力呈现先少量增加后迅速减小的趋势。

3）本文根据有限元模型计算结果推导出的支柱连接节点极限承载力公式经检验较为可靠。

4）本文给出了从安全角度出发的支柱连接节点可靠性分析流程，并通过算例验证了其适用性。

 [1] 朱波. 邮轮上层建筑参与总纵强度有效度研究[D]. 武汉: 武汉理工大学, 2018. [2] 郭国虎. 大型邮轮上层建筑典型承载结构强度评估方法研究[D]. 武汉: 武汉理工大学, 2019. [3] 甘进, 叶文强, 任鹏良, 等. 大型邮轮偏心支柱结构极限承载力研究[J]. 中国造船, 2021, 62(3): 28-39. GAN Jin, YE Wenqiang, REN Pengliang, et al. Research on the ultimate bearing capacity of large cruise ship eccentric strut structure [J]. Ship Building Of China 2021, 62 (3): 28-39. [4] AGBOMERIE C O A, STEPHEN Q B, YE Jianqiao. Wave induced stress profile on a paired column semisubmersible hull[J]. Engineering Structures, 2017, 143: 77–90. [5] 李冬琴, 刘存杰, 徐士友. 小水线面双体船支柱斜度对其耐波性能影响分析[J]. 舰船科学技术, 2016, 38(11): 20-23. LI Dongqin, LIU Cunjie, XU Shiyou. Analysis of the influence of the tilt of the pole of the SWATH catamaran on its seakeeping performance[J]. Ship Science and Technology, 2016, 38(11): 20-23. [6] BV. Rule for the Classification of Steel Ships NR456-July2017[S]. 2017. [7] DNV. DNV GL Class Documents: Rules for Classification, Class Programmers, Class Guidelines, Offshore Standards and Statutory Interpretations[S]. 2018. [8] CCS. 钢质海船入级规范(2015)[S]. 2015. [9] CCS. 邮轮局部结构直接计算指南 (2021) [S]. 2021. [10] 张俊, 凌芳芳. CCS规范中支柱载荷规定解析[J]. 船舶工程, 2018, 40(S1): 83-85. ZHANG Jun, LING Fangfang. Analysis of the provisions on pillar load in the CCS code[J]. Ship Engineering, 2018, 40(S1): 83-85. DOI:10.13788/j.cnki.cbgc.2018.S1.083 [11] CCS. 邮轮规范(2015) [S]. 2015. [12] 赵晋. 船舶极限强度可靠性分析中结构要素提取及计算方法研究[D]. 武汉: 华中科技大学, 2015. [13] 严力宇. 考虑参数随机性的碰撞/搁浅受损船体结构极限强度研究[D]. 镇江: 江苏科技大学, 2020.