﻿ 基于灰色关联分析的舰船舱室人因可靠性评估
 舰船科学技术  2023, Vol. 45 Issue (23): 166-169    DOI: 10.3404/j.issn.1672-7649.2023.23.030 PDF

Human reliability evaluation of ship cabins based on grey correlation analysis
ZHAO Zhen, ZHAO Bo
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063021, China
Abstract: To address the issue of difficulty in quantitatively and qualitatively evaluating the human reliability of ship cabins, a grey correlation analysis based human reliability evaluation method for ship cabins is proposed. This method utilizes the cognitive reliability model (HCR) to analyze the dynamic cognitive behavior of ship cabin pilots during steering and the output mode of stress steering actions. After calculating the human error rate under different stress steering action output modes, a reference standard for human reliability evaluation is established. By using the cosine theorem based human reliability evaluation index screening method, the behavior formation factors of historical ship steering accidents are selected as reliability evaluation indicators based on the cosine theorem. Build a human reliability evaluation model based on grey correlation analysis, set the pilot steering indicator data that meets the human error rate standard as the reference sequence, and the indicator data of the driver to be tested as the comparison sequence. Calculate the grey correlation degree of the two sequences, with a high correlation degree, indicating high human reliability. This completes the comprehensive evaluation of human reliability in ship cabins. After testing, the human reliability evaluation results of the ship cabin pilot using this method are consistent with the actual data.
Key words: grey correlation analysis     ship cabins     human reliability     human error rate     cosine theorem     behavioral shaping factor
0 引　言

1 舰船舱室人因可靠性评估 1.1 舰船舱室人因可靠性评估标准分析方法

 $g = {\rho ^{ - \left( {\frac{{\frac{t}{{D \cdot {T_{0.5}}}} - \varepsilon }}{\phi }} \right)\varphi }} 。$ (1)

1.2 基于余弦定理的人因可靠性评估指标筛选方法

 $\cos \left[ {\alpha \left( {e,o} \right)} \right] = \frac{{\left\langle {{{\left( {{{\bar W}_e}} \right)}_{1*n}},{{\left( {{{\bar W}_o}} \right)}_{1*n}}} \right\rangle }}{{\left| {{{\left( {{{\bar W}_e}} \right)}_{1*n}}} \right| \times \left| {{{\left( {{{\bar W}_o}} \right)}_{1*n}}} \right|}}。$ (2)

 图 1 舰船舱室人因可靠性评估指标 Fig. 1 Human reliability evaluation indicators for ship cabins
1.3 基于灰色关联分析的人因可靠性评估模型 1.3.1 设置舰船舱室人因可靠性评估序列

1.3.2 舰船舱室人因可靠性评估序列无量纲处理

 $\left( {{Y_1},{Y_2},...,{Y_m}} \right) = \left[ {\begin{array}{*{20}{c}} {{y_{01}}}&{{y_{02}}}& \cdots &{{y_{0m}}} \\ {{y_{11}}}&{{y_{12}}}& \cdots &{{y_{1m}}} \\ \vdots & \vdots &{}& \vdots \\ {{y_{m1}}}&{{y_{m2}}}& \cdots &{{y_{mm}}} \end{array}} \right]。$ (3)
1.3.3 舰船舱室人因可靠性评估指标求差分析

1.3.4 舰船舱室人因可靠性评估的关联系数运算

 $0 \leqslant \frac{{\Delta \left( {\min } \right)}}{{\Delta \left( {\max } \right)}} \leqslant \frac{{{\Delta _{0j}}\left( t \right)}}{{\Delta \left( {\max } \right)}} \leqslant 1。$ (4)

 ${\delta _{0j}}\left( t \right) = \frac{{\Delta \left( {\min } \right) + \Delta \left( {\max } \right)}}{{{\Delta _{0j}}\left( t \right) + \Delta \left( {\max } \right)}} 。$ (5)

 ${\delta _{0j}} = \left[ {\begin{array}{*{20}{c}} {{\delta _{11}}}& \cdots &{{\delta _{1m}}} \\ \vdots &{}& \vdots \\ {{\delta _{m1}}}& \cdots &{{\delta _{mm}}} \end{array}} \right] 。$ (6)

1.3.5 基于灰色关联度的人因可靠性评估结果判断

2 实验结果与分析

 图 2 舰船航行环境 Fig. 2 Ship navigation environment

 图 3 4#驾驶员人因可靠性评估的灰色关联度详情 Fig. 3 Details of grey correlation degree for human reliability assessment of 4 # drivers
3 结　语

 [1] 郝勇, 时间, 吴昊旻. 基于冰山模型的长江危险品船船员素质评价指标体系构建[J]. 安全与环境学报, 2020, 20(4): 1376-1383. HAO Yong, SHI Jian, WU Hao-min. Building up quality evaluation index piles of crew members in charge of dangerous goods processing along the Yangtze River based on the iceberg model[J]. Journal of Safety and Environment, 2020, 20(4): 1376-1383. [2] 岑康, 张翌东, 黄夏雨, 等. 考虑人因可靠性的安全仪表功能SIL验证方法研究[J]. 中国安全生产科学技术, 2020, 16(3): 31-36. CEN Kang, ZHANG Yi-dong, HUANG Xia-yu, et al. Study on verification method of safety integrity level (SIL) for safety instrumented function considering human reliability[J]. Journal of Safety Science and Technology, 2020, 16(3): 31-36. [3] 张爱琳, 刘晓佳. 改进CREAM模型的船舶引航员人因可靠性预测[J]. 中国航海, 2021, 44(1): 32-37+43. ZHANG Ai-lin, LIU Xiao-jia. Improved CREAM model for prediction of human reliability concerning harbor pilots[J]. Navigation of China, 2021, 44(1): 32-37+43. [4] 龚恒宇, 曹辉. 船舶机舱协作式模拟训练评估方法[J]. 船海工程, 2020, 49(1): 111-114+119. GONG Heng-yu, CAO Hui. Evaluation method for collaborative simulation training of marine engine room[J]. Ship & Ocean Engineering, 2020, 49(1): 111-114+119. [5] 李星, 谭麟, 高凌云, 等. 系统安全领域人因错误理论研究进展[J]. 中国电子科学研究院学报, 2020, 15(7): 612-619+628. LI Xing, TAN Lin, GAO Ling-yun, et al. Research progress of human error theory in industry safety engineering[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(7): 612-619+628.