﻿ 考虑多场耦合的碰撞载荷下水中悬浮隧道动力响应
 舰船科学技术  2023, Vol. 45 Issue (23): 24-30    DOI: 10.3404/j.issn.1672-7649.2023.23.005 PDF

The dynamic response of submerged floating tunnels under collision loads considering the coupling of multiple loads
LI Xian-shu, WANG Jia-xia, ZHANG Ming-wei, LIU Kun
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Abstract: A submerged floating tunnel (SFT) is suspended at a certain depth underwater through the mooring system, and the collision with the submarine may cause the tunnel structure to produce a great motion response, presenting a large nonlinear displacement, which will make the tunnel lose its original stability and even have a great impact on the tunnel safety. Therefore, this paper studied the motion response of SFT under the action of collision load in a multi-field coupling scenario. The effectiveness of the numerical model was verified by comparative analysis with experimental results in the literature, and the three-dimensional motion model of SFT and its mooring system was established, at the same time the collision scene of SFT by Abaqus was established, and STAR-CCM+ bidirectional coupling joint simulation was carried out, The motion response of SFT impacted by submarine was studied, and the variation law of motion response of SFT under different collision scenarios was analyzed.
Key words: submerged floating tunnel     collision     bidirectional coupling     dynamic response     numerical simulation
0 引　言

1 水中悬浮隧道运动性能理论

 $\frac{{\partial (\rho \bar v)}}{{\partial t}} + \nabla \cdot (\rho \bar v\bar v) = - \nabla \cdot (\bar pI) + \nabla \cdot (T + {T_{RANS}}) + \rho g。$ (1)

${\text{SST}}$ $k{\text{ - }}\varepsilon$ 湍流模型的输运方程[9]为：

 $\begin{split} \frac{{\partial (\rho k)}}{{\partial t}} +& \frac{{\partial (\rho k{U_i})}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {{\mu _1} + \frac{{{\mu _t}}}{{{\sigma _k}}}} \right)\frac{{\partial k}}{{\partial {x_j}}}} \right] + \\ &{\mu _t}\frac{{\partial {U_j}}}{{\partial {x_i}}}\left( {\frac{{\partial {U_j}}}{{\partial {x_i}}} + \frac{{\partial {U_i}}}{{\partial {x_j}}}} \right) - \rho \varepsilon ，\end{split}$ (2)
 \begin{aligned} \frac{{\partial (\rho \varepsilon )}}{{\partial t}} + &\frac{{\partial (\rho \varepsilon {U_i})}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left[ {\left( {{\mu _1} + \frac{{{\mu _t}}}{{{\sigma _k}}}} \right)\frac{{\partial \varepsilon }}{{\partial {x_j}}}} \right] + \\ &{C_{1\varepsilon }}{\mu _t}\frac{{\partial {U_j}}}{{\partial {x_i}}}\left( {\frac{{\partial {U_j}}}{{\partial {x_i}}} + \frac{{\partial {U_i}}}{{\partial {x_j}}}} \right) - {C_{2\varepsilon }}\rho \frac{{{\varepsilon ^2}}}{k}。\end{aligned} (3)

 $[{\boldsymbol{M}}]\{ \ddot {\boldsymbol{U}}\} + [{\boldsymbol{C}}]\{ \dot {\boldsymbol{U}}\} + [K]\{ {\boldsymbol{U}}\} = \{ {{\boldsymbol{F}}^{ext}}\}。$ (4)

 图 1 双向耦合流程图 Fig. 1 Bidirectional coupled flow chart
2 数值仿真验证

 图 2 数值水槽模型 Fig. 2 Numerical wave flume model

 图 3 两种计算结果比较曲线 Fig. 3 Comparison curves of two results
3 碰撞性能分析评估 3.1 水中悬浮隧道水动力模型

 图 4 隧道断面形式图及几何模型图 Fig. 4 Tunnel section design drawing and finite element model drawing

 图 5 计算模型流场区域示意图 Fig. 5 Schematic diagram of flow field area of calculation model
3.2 碰撞场景和碰撞仿真结果及分析

 图 6 碰撞场景有限元模型 Fig. 6 Finite element model of collision scene

 图 7 碰撞力曲线 Fig. 7 Curves of collision force-time

 图 8 隧道结构应力应变云图（变形效果放大50倍） Fig. 8 Stress-strain cloud image of tunnel structure (deformation effect magnified 50 times)

 图 9 运动响应对比图 Fig. 9 Comparison of motion response
4 碰撞参数对水中悬浮隧道碰撞响应的影响

 图 10 不同的碰撞角度简化示意图 Fig. 10 Simplified scenarios of different collision angles

 图 11 两种碰撞参数下的碰撞力-时间曲线 Fig. 11 Curves of collision force-time under two collision parameters

 图 12 不同碰撞速度、碰撞角度下隧道应力应变云图（变形效果放大50倍） Fig. 12 Stress-strain cloud map of tunnel under different collision velocities and angles (deformation effect magnified 50 times)

 图 13 不同碰撞角度下水中悬浮隧道运动响应对比图 Fig. 13 Comparison of motion response under different collision angle

 图 14 不同碰撞速度下水中悬浮隧道运动响应对比图 Fig. 14 Comparison of motion response under different collision velocities
5 结　语

1）在水中悬浮隧道受到碰撞的过程中，产生的应力主要分布在隧道表面与潜器接触的区域，具有明显的局部性。碰撞虽然使隧道表面产生了变形，但由于变形程度相对较小且隧道结构没有产生裂缝，属于轻度破坏，所以并不会对隧道后期运营阶段的稳定性造成很大影响。

2）在不同撞击速度的情形下，碰撞后隧道的运动响应和结构的损伤程度也都随着撞击速度的提高而增加。但当整个撞击过程完成后，隧道因处于完全相同的波流环境中，运动响应不再有明显差异。

3）在不同碰撞角度的情形下，随着夹角的减小，潜器垂直于隧道轴线的速度降低，沿隧道轴线的速度增大。撞击角度为90°时，结构的应力高于其他2个角度，结构损伤最严重。此外，90°撞击下水中悬浮隧道的横荡和垂荡的运动响应，都大于60°和30°碰撞下的运动响应。

 [1] HAVARD O. Submerged floating tunnel(sft), a new type of structure for efficient transport, energy saving, minimizing pollution and environmental impact. Strait Crossing 2001[C]// Krobeborg: Swets&Zeitlinger Publishers Lisse, 2001, 545–546 [2] MAZZOLANI F. The waterway strait crossing by means of Submerged Floating Tunnels[J]. Bauingenieur, 2003, 218–223. [3] ZHANG S Y, Vibration behavior and response to an accid-ental collision of SFT prototype in Qiandao Lake (China) [J]. Procedia Engineering, (2010)189–197. [4] 张嫄, 董满生, 唐飞. 冲击荷载作用下水中悬浮隧道的位移响应[J]. 应用数学和力学, 2016, 37(5): 483-491. DOI:10.3879/j.issn.1000-0887.2016.05.004 [5] 刘迁苹. 水下悬浮隧道断索、碰撞的分析模型及动态响应研究[D]. 大连: 大连理工大学, 2021. [6] LUO G, PAN S, ZHANG Y, et al. Response Analysis of Submerged floating tunnel hit by submarine based on smoothed-particle hydrodynamics[J]. Shock and Vibration, 2019, 34(8): 82–88. [7] 陈灿鹏, 孙文哲, 王琰, 等. 水中悬浮隧道受撞击作用的数值分析[J]. 水道港口, 2020, 41(2): 191-196. [8] 邹蓓蕾, 陈淑玲, 王洪富, 等. 规则波中迎浪航行的三体无人监测船阻力性能及片体布局影响研究[J]. 江苏科技大学学报(自然科学版), 2021, 35(3): 16–23. ZOU Bei-lei, CHEN Shu-ling, WANG Hong-fu, et al. Research on resistance performance of three-body unmanned monitoring ship navigating in regular waves and the influence of the body layout[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2021, 35(3): 16–23. [9] 邹鹏旭, 刘孟源, 陈良志. 波浪作用下悬浮隧道管体-锚索耦合系统水动力特性研究[J]. 现代隧道技术, 2021, 58(3): 154-162. ZOU Peng-xu, LIU Meng-yuan, CHEN Liang-zhi. Study on the hydrodynamic characteristics of the coupling system of submerged floating tunnel tubes and anchor cables under wave action[J]. Modern Tunnelling Technology, 2021, 58(3): 154-162. DOI:10.13807/j.cnki.mtt.2021.03.020 [10] 孙钦东, 唐怀平. 重力式桥墩与船舶斜向碰撞过程数值仿真[J]. 重庆理工大学学报(自然科学), 2018, 32(7): 67-71. [11] 王加夏, 周天九, 刘昆, 等. 规则波迎浪砰击下三维船体耦合响应研究[J]. 江苏科技大学学报(自然科学版), 2020, 34(4): 13-18+24. [12] 王长春. 水中悬浮隧道与洋流耦合作用的模型试验[D]. 成都: 西南交通大学, 2005. [13] 陈子和. 浮式防波堤与波浪能发电装置水动力分析[D]. 镇江: 江苏科技大学, 2021. [14] 耿宝磊, 刘宇, 胡传琪, 等. 悬浮隧道水动力问题研究概述[J]. 水道港口, 2020, 41(1): 1-8. DOI:10.3969/j.issn.1005-8443.2020.01.001 [15] 田连波, 侯建国. ABAQUS中混凝土塑性损伤因子的合理取值研究[J]. 湖北大学学报(自然科学版), 2015, 37(4): 7. [16] 赵岚涛. 波—流耦合作用下悬浮隧道合理断面型式研究[D]. 重庆: 重庆交通大学, 2020.