﻿ 船体分段测试及数据处理技术
 舰船科学技术  2023, Vol. 45 Issue (22): 214-217    DOI: 10.3404/j.issn.1672-7649.2023.22.042 PDF

1. 武汉船舶职业技术学院，湖北 武汉 430050;
2. 中国船舶集团有限公司第七二二研究所，湖北 武汉 430205

Hull segmentation testing and data processing technology
HUANG Yun1, XIONG Ying2, LIU Jun1
1. Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China;
2. The 722 Research Institute of CSSC, Wuhan 430205, China
Abstract: This article studies computer-based ship digitization technology, focusing on analyzing the design method of ship combination curves, and providing a computer-based digital design process for ships; Explored the method of ship segmented testing, with a focus on the structure of the total station and its application in ship segmented measurement. At the same time, studied the registration algorithm of ship measurement data; Finally, the data processing method for ship segmented testing was elaborated, and the data processing method for ship segmented testing proposed in this paper was analyzed using PID neural network.
Key words: computers     hull section testing     data processing
0 引　言

1 基于计算机的船舶数字化技术 1.1 船舶组合曲线设计

 $P\left( u \right) = \frac{{\displaystyle\sum\limits_{i = 0}^n {{B_{i,3}}\left( u \right){W_i}{V_i}} }}{{\displaystyle\sum\limits_{i = 0}^n {{B_{i,3}}\left( u \right){W_i}} }}\text{。}$ (1)

 $S\left( {u,v} \right) = \frac{{\displaystyle\sum\limits_{i = 0}^n {\displaystyle\sum\limits_{j = 0}^m {{B_{i,3}}\left( u \right){B_{j,3}}\left( v \right){W_{i,j}}{V_{i,j}}} } }}{{\displaystyle\sum\limits_{i = 0}^n {\displaystyle\sum\limits_{j = 0}^m {{B_{i,3}}\left( u \right){B_{j,3}}\left( v \right){W_{i,j}}} } }}\text{。}$ (2)

 ${E_{curve}} = \int {\left( {\alpha w'{{\left( u \right)}^2} + \beta w''{{\left( u \right)}^2} - 2fw\left( u \right)} \right){\rm{d}}u} \text{。}$ (3)

 ${E'_{curve}} = \int {{k^2}{\rm{d}}u} \text{，}$ (4)
 ${E_{surface}} = \int {\left( {k_1^2 + k_2^2} \right)} {\rm{d}}u{\rm{d}}v\text{。}$ (5)

 $\begin{array}{*{20}{l}} {\min f\left( x \right)} \\ {{\mathrm{s.t.}}\left\{ {\begin{array}{*{20}{c}} {{c_i}\left( x \right) = 0,i \in E \in \left\{ {1,2, \cdot \cdot \cdot m} \right\}}\text{，} \\ {{c_i}\left( x \right) \leqslant 0,i \in I \in \left\{ {m + 1, \cdot \cdot \cdot P} \right\}} \text{。} \end{array}} \right.} \end{array}$ (6)

 ${I_1} = \left\{ {i|{c_i}\left( {{x^{\left( k \right)}}} \right) \geqslant 0,i \in I} \right\}\text{，}$ (7)
 ${I_2} = \left\{ {i|{c_i}\left( {{x^{\left( k \right)}}} \right) \lt 0,i \in I} \right\}\text{。}$ (8)
1.2 船舶数字化设计过程

 $S = \int_0^1 {\left[ {y\left( u \right)\frac{{{\rm{d}}x}}{{{\rm{d}}u}}} \right]{\rm{d}}u} \text{，}$ (9)
 ${A_w} = 2S\text{。}$ (10)

 ${x_c} = \frac{{\displaystyle\int_0^1 {x\left( u \right)y\left( u \right)\dfrac{{{\rm{d}}x}}{{{\rm{d}}u}}{\rm{d}}u} }}{S}\text{，}$ (11)
 ${y_c} = \frac{{\displaystyle\int_0^1 {y{{\left( u \right)}^2}\dfrac{{{\rm{d}}x}}{{{\rm{d}}u}}{\rm{d}}u} }}{{2S}}\text{。}$ (12)

 $k\left( u \right) = \frac{{{\rm{d}}y\left( u \right)}}{{{\rm{d}}x\left( u \right)}}\text{，}$ (13)

 $k'\left( u \right) = \dfrac{{\left| {\dfrac{{{{\rm{d}}^2}y}}{{{\rm{d}}{u^2}}}\dfrac{{{\rm{d}}x}}{{{\rm{d}}u}} - \dfrac{{{{\rm{d}}^2}x}}{{{\rm{d}}{u^2}}}\dfrac{{{\rm{d}}y}}{{{\rm{d}}u}}} \right|}}{{{{\left[ {{{\left( {\dfrac{{{\rm{d}}x}}{{{\rm{d}}u}}} \right)}^2} + {{\left( {\dfrac{{{\rm{d}}y}}{{{\rm{d}}u}}} \right)}^2}} \right]}^{\frac{3}{2}}}}}\text{。}$ (14)

 ${d_i} = \left| {\frac{{{k_{i + 2}} - {k_{i + 1}}}}{{{l_{i + 1}}}} - \frac{{{k_{i + 1}} - {k_i}}}{{{l_i}}}} \right|\text{。}$ (15)
2 船体分段测试方法

 图 1 全站仪结构图 Fig. 1 Structure diagram of total station

 $D = \frac{\lambda }{2}\left( {N + \Delta N} \right)\text{。}$ (16)

 $\Delta D = \frac{{{c_0} \cdot \Delta t}}{{2{n_{REF}}}}\left( {\frac{{{n_{REF}} - n}}{n}} \right)\text{。}$ (17)

 $H{Z_k} = H{Z_0} + \frac{C}{{\sin {V_k}}} + \delta \frac{{\sin \theta }}{{\tan {V_k}}} + \frac{K}{{\tan {V_k}}}\text{。}$ (18)

 ${V_k} = {V_0} + i + \delta \cos \theta \text{。}$ (19)

 $f\left( v \right) = \min \frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {{d_i}\left( v \right)} \right)}^2}} \text{。}$ (20)

 ${f_*}(v) = \arg \max \frac{1}{N}{\sum\limits_{i = 1}^N {\exp \left( { - \frac{{\left( {R\left( v \right){p_i} + t\left( v \right) - {q_i}} \right) \cdot {n_i}}}{{2{\sigma ^2}}}} \right)} ^2}\text{。}$ (21)

 图 2 不同距离下的配准率 Fig. 2 Registration rates at different distances
3 船舶数据处理技术

 $y\left( {k + 1} \right) = \frac{{x\left( {k + 1} \right)}}{{\sqrt {0.1 + 0.9{{\left[ {x\left( {k + 1} \right)} \right]}^2}} }} + e\left( {k + 1} \right)\text{。}$ (22)

 图 3 数据处理结果曲线 Fig. 3 Data processing result curve

 图 4 数据处理误差曲线 Fig. 4 Data processing error curve

 $y\left( t \right) = 0.4y(t - 1) + 0.54y(t - 2) + f[u(k - 1)]\text{，}$ (23)
 $u\left( t \right) = 0.2\sin \frac{{2{\text π} t}}{{25}} + 0.3\sin \frac{{{\text π} t}}{{75}}\text{。}$ (24)

 图 5 结合PID神经网络算法的数据处理结果 Fig. 5 Data processing results combined with PID neural network algorithm

 图 6 高阶非线性数据处理结果 Fig. 6 High order nonlinear data processing results

 $y\left( {t + 1} \right) = f\left[ {y\left( t \right)} \right] + g\left[ {u\left( k \right)} \right]\text{，}$ (25)
 $f\left[ {y\left( t \right)} \right] = \frac{{5y\left( t \right)}}{{2.5 + {y^2}\left( t \right)}}\text{。}$ (26)
4 结　语

 [1] 黄晓翔, 吕丽平. 船体外形分段测量数据配准技术优化研究与应用[J]. 舰船科学技术, 2021, 43(6): 28-30. HUANG Xiao-xiang, LV Li-ping. Optimization research and application of data registration technology for hull shape sectional measurement[J]. Ship Science and Technology, 2021, 43(6): 28-30. [2] 姚明君, 谢菊芳, 王浩君, 等. 基于PLC的船体分段合拢控制系统分析与设计[J]. 湖北大学学报, 2013(35): 79-84. YAO Ming-jun, XIE Ju-fang, WANG Hao-jun et al. Analysis and design of automation assembling system of large ship subsection based on PLC[J]. Journal of Hubei University, 2013(35): 79-84. [3] 汪浩, 裴大茗, 王爱民等. 基于虚拟流水的多重约束环境下船体分段车间动态调度[J]. 船舶工程, 2019, 43(41): 128-137. WANG Hao, PEI Da-ming, WANG Ai-ming et al. Ship block dynamic scheduling under multi-constraints based on virtual flow[J]. Ship Engineering, 2019, 43(41): 128-137. [4] 李瑞, 张小明, 张帆等. 计算机辅助船体分段吊装强度计算方法及系统开发[J]. 船舶工程, 2014(36): 162-165. LI Rui, ZHANG Xiao-ming, ZHANG Fan et al. Strength calculation method and system development of computer aided ship block lifting[J]. Ship Engineering, 2014(36): 162-165. [5] 任晋宇, 徐得志, 吴亮等. 舰艇典型分段焊接工艺仿真及其变形规律分析[J]. 船舶工程, 2020(42): 100-106. REN Jin-yu, XU De-zhi, WU liang et al. Typical subsection welding process simulation and deformation law of naval vessel[J]. Ship Engineering, 2020(42): 100-106. [6] 管官, 林焰, 申玫等. 考虑工程约束的船体分段测量点集匹配方法[J]. 哈尔滨工程大学学报, 2013(34): 541-548. GUAN Guan, LIN Yan, SHEN Mei et al. Point registration algorithm for hull block measurement with engineering constraints[J]. Journal of Harbin Engineering University, 2013(34): 541-548.