﻿ 基于声音分析技术的船舶辐射噪声特征提取方法
 舰船科学技术  2023, Vol. 45 Issue (22): 169-172    DOI: 10.3404/j.issn.1672-7649.2023.22.031 PDF

Method for extracting features of ship radiated noise based on sound analysis technology
WU Shu-qing
Liaocheng University DongChang College, Liaocheng 252000, China
Abstract: This article studies sound analysis technology, Simulated and analyzed the radiated noise of ships, provided the power spectrum, attenuation power spectrum, and periodic component line spectrum of the white noise radiated by ships, and analyzed the impact signal curve; provided the purified ship radiated noise demon spectrum curve.
Key words: sound analysis     radiated noise     feature extraction
0 引　言

1 声音分析技术 1.1 船舶辐射噪声的声学特征分析

 $V = v\left( t \right)\vec n\text{。}$ (1)

 ${\vec n^{\rm{T}}} = \left[ {\cos \theta \cos \alpha ,\sin \theta \cos \alpha ,\sin \alpha } \right]\text{，}$ (2)

 $\left\{ {\begin{array}{*{20}{l}} {p\left( t \right) = x\left( t \right) + {n_p}\left( t \right)}\text{，} \\ {{v_x}\left( t \right) = v\left( t \right)\cos \theta \cos \alpha + {n_{vx}}\left( t \right)}\text{，} \\ {{v_y}\left( t \right) = v\left( t \right)\sin \theta \cos \alpha + {n_{vy}}\left( t \right)} \text{，} \\ {{v_z}\left( t \right) = v\left( t \right)\sin \alpha + {n_{vz}}\left( t \right)} \text{。} \end{array}} \right.$ (3)

 $SNR=10lg\frac{P_s}{P_n}\left(\mathrm{dB}\right)\text{。}$ (4)

 $v\left( t \right) = {v_x}\left( t \right)\cos \theta + {v_y}\left( t \right)\sin \theta \text{。}$ (5)

 $P = \sum\limits_{l = 1}^L {{A_l}{e^{j\left( {2{\text π} {f_l} - kx} \right)}}} \text{。}$ (6)

 $\vec u = - \frac{1}{\rho }\int {\nabla p \cdot {\rm{d}}t} \text{，}$ (7)

 $u = \frac{1}{{\rho c}}\sum\limits_{k = 1}^L {{A_k}{e^{j\left( {2{\text π} {f_l}t - kx} \right)}}} \text{。}$ (8)

 $a = \frac{{jk}}{\rho }\sum\limits_{l = 1}^L {{A_k}{e^{j\left( {2{\text π} {f_l}t - kx} \right)}}} \text{，}$ (9)

 $\varepsilon = \frac{1}{{\rho c}}\text{。}$ (10)

 $p' = \frac{{kt}}{r}\sum\limits_{l = 1}^L {{e^{j\left[ {\left( {2{\text π} {f_0}t - kr} \right) + {\text π} \mu \left( {t - \frac{r}{c}} \right){{\log }_t}\left( {\frac{c}{m}\left( {t - \frac{r}{c}} \right)} \right)} \right]}}} \text{。}$ (11)

1.2 小波分析技术

 ${w_f}\left( {a,b} \right) = \frac{1}{{\sqrt {\left| a \right|} }}\int_{ - \infty }^{ + \infty } {f\left( t \right)\varphi \left( {\frac{{t - b}}{a}} \right){\rm{d}}t} \text{。}$ (12)

 ${\varphi _{ab}}\left( t \right) = {\left| a \right|^{ - \frac{1}{2}}}\varphi \left( {\frac{{t - b}}{a}} \right)\text{。}$ (13)

 ${c_{m + 1,k}} = \sum\limits_{n = 1}^N {h\left( {n - 2k} \right){c_{m,n}}} \text{，}$ (14)
 ${d_{m + 1,k}} = \sum\limits_{n = 1}^N {g\left( {n - 2k} \right){c_{m,n}}} \text{。}$ (15)

2 船舶辐射噪声仿真分析

 图 1 白噪声功率谱 Fig. 1 White noise power spectrum

 图 2 衰减功率谱 Fig. 2 Attenuation power spectrum

 ${G_1}\left( {nT} \right) = \sum\limits_{k = 1}^{k = K} {{A_k}\sin \left( {2{\text π} {f_k}n{T_s} + {\phi _k}} \right)} \text{。}$ (16)

 图 3 周期性分量线谱图 Fig. 3 Periodic component line spectrogram

 $x\left( t \right) = A\sin \left( {ct} \right){e^{ - 3t}}\text{。}$ (17)

 图 4 冲击函数曲线 Fig. 4 Impact function curve
3 船舶辐射噪声特征提取

 $x'\left( t \right) = A\left( {1 + m\sin {\mathit{\Omega}} t} \right)\cos \left( {\omega t} \right)\text{。}$ (18)

 $\left| {x'\left( t \right)} \right| = \frac{{2A}}{{\text π} } + \frac{{2A}}{{\text π} }m\sin \left( {{\mathit{\Omega}} t} \right)\text{。}$ (19)

 图 5 船舶辐射噪声包络谱 Fig. 5 Envelope spectrum of ship radiated noise

 图 6 船舶辐射噪声demon谱曲线 Fig. 6 Demon spectral curve of ship radiated noise

1.5维谱在船舶辐射噪声线谱提取过程中有着很好的性能，本文对船舶辐射噪声信号进行1.5维谱特征提取，船舶辐射噪声曲线如图7所示。可以看出，该船舶辐射噪声中的脉冲信号主要集中在低频区域。

 图 7 船舶辐射噪声曲线 Fig. 7 Ship radiated noise curve
4 结　语

 [1] 张宇, 刘雨东. 倒谱在船舶辐射噪声特征提取中的应用[J]. 舰船科学技术, 2009(31): 84-87. ZHANG Yu, LIU Yu-dong. Cepstrum application in warship radiated noise characteristic extraction[J]. Ship Science and Technology, 2009(31): 84-87. [2] 李新. 功率谱估计在船舶噪声特征提取中的应用仿真[J]. 舰船科学技术, 2022(44): 43-46. LI Xin. Application simulation of power spectrum estimation in ship noise feature extraction[J]. Ship Science and Technology, 2022(44): 43-46. [3] 鞠东豪, 李宇, 王宇杰, 等. 基于堆栈稀疏去噪自编码器神经网络的船舶辐射噪声目标识别算法研究[J]. 振动与冲击, 2021(40): 50-56+74. JU Dong-hao, LI Yu, WANG YU-jie et al. A stack sparse denoising autoencoder-based network approach for ship[J]. Journal of vibration and shock, 2021(40): 50-56+74. [4] 吴承希, 王彪, 徐千池, 等. 基于小波包分解和PCA-Attention-LSTM的船舶辐射噪声识别技术[J]. 声学技术, 2022(41): 264-273. WU Cheng-xi, WANG Biao, XU Qian-chi et al. Ship radiated noise recognition technology based on wavelet packet decomposition and PCA-Attention_LSTM[J]. Technical Acoustics, 2022(41): 264-273. DOI:10.16300/j.cnki.1000-3630.2022.02.018 [5] 郭政, 赵梅, 胡长青, 等. 船舶辐射噪声广义多尺度数学形态学特征提取与应用研究[J]. 振动与冲击, 2022(41): 21-28+100. GUO Zheng, ZHAO Mei, HU Chang-qing et al. A study on feature extraction and application for ship radiated noise’s generalized multiscale mathematical morphology feature[J]. Journal of Vibration and Shock, 2022(41): 21-28+100. DOI:10.13465/j.cnki.jvs.2022.04.004 [6] 张岩, 尹力. 主成分分析在船舶辐射噪声分类识别中的应用[J]. 应用声学, 2009(28): 20-26. ZHANG Yan, YIN Li. Application of principal component analysis to ship-radiated noise classification and recognition[J]. Application Acoustics, 2009(28): 20-26. DOI:10.11684/j.issn.1000-310X.2009.01.003