﻿ 复合储能混合动力船舶智能能效管理系统
 舰船科学技术  2023, Vol. 45 Issue (22): 130-133    DOI: 10.3404/j.issn.1672-7649.2023.22.024 PDF

Intelligent energy efficiency management system for hybrid electric ships based on composite energy storage
JIANG Liang, HUANG Zai-hui, CHEN Min-feng
College of Ocean Engineering, Guilin University of Electronic Technology, Beihai 536000, China
Abstract: This article designs a composite energy storage system for ships, modeled the hybrid power system of the ship, the discharge curve and voltage open circuit curve of the battery were analyzed. The charging process of the supercapacitor and the DC/DC output voltage at a fixed phase shift angle were discussed, and the polarization characteristic curve of the fuel cell was studied; Finally, a ship intelligent energy efficiency management system was proposed.
Key words: composite energy storage     hybrid power     energy efficiency management
0 引　言

1 船舶复合储能系统设计 1.1 复合储能系统结构分析

 图 1 船舶复合储能系统结构图 Fig. 1 Structure diagram of ship composite energy storage system

 \left\{ \begin{aligned} & {U = {U_{OC}} - {U_{TP}} - \frac{1}{C}\int {{I_L}{\rm{d}}t - R{I_L}} }\text{，} \\ & {{I_L} = \frac{{{U_{TP}}}}{{{R_1}}} - C\frac{{{\mathrm{d}}{U_{TP}}}}{{{\mathrm{d}}t}}} \text{。} \end{aligned} \right. (1)

 $C = \frac{Q}{V}\text{，}$ (2)

 $C' = \frac{{{\varepsilon _0}{\varepsilon _1}A}}{D}\text{。}$ (3)

 $U' = I{R_s} + \frac{1}{C}\int {I{\rm{d}}t} \text{，}$ (4)
 $SoC = \frac{{{U_0} + \frac{1}{C}\int_0^1 {I{\rm{d}}t - {U_{\min }}} }}{{{U_{\max }} - {U_{\min }}}}\text{，}$ (5)
 $W = \frac{1}{2}C\left( {U_{\max }^2 - U_{\min }^2} \right)\text{。}$ (6)
1.2 复合储能系统容量优化

 ${P_{HESS}} = {P_{load}} - {P_G}\text{，}$ (7)
 ${P_{SC}} = {P_{HESS}} - {P_b}\text{。}$ (8)

 $SO{C_t} = SO{C_{t - 1}} \cdot \left( {1 - \sigma } \right) - \frac{{P \cdot \Delta t \cdot \eta }}{E}\text{，}$ (9)
 $SO{C_t}^\prime = SO{C_{t - 1}}^\prime \cdot \left( {1 - \sigma } \right) - \frac{{P \cdot \Delta t}}{{E \cdot \eta }}\text{。}$ (10)

 ${f_p} = \frac{{d{{\left( {1 + d} \right)}^l}}}{{{{\left( {1 + d} \right)}^l} - 1}}\text{。}$ (11)

 $\min {C_p} = \frac{1}{{365}}\left( {{C_T} + {C_Y} + {C_W}} \right)\text{。}$ (12)

 $LPSP=\frac{\displaystyle\sum\limits_{t=1}^{t=24}P_{lock.t}}{\displaystyle\sum\limits_{t=1}^{t=24}P_{load.t}}\text{。}$ (13)

 $SPSP = \frac{{\displaystyle\sum\limits_{t = 1}^{t = 24} {{P_{waste.t}}} }}{{\displaystyle\sum\limits_{t = 1}^{t = 24} {{P_{G.t}}} }}\text{。}$ (14)

2 船舶混合动力系统建模仿真

 ${Q_{bat.a}} = \int_{{t_0}}^{{t_{cut}}} {{i_{bat}}{\rm{d}}t} \text{。}$ (15)

 $So{C_{bat}} = \left( {1 - \frac{{{Q_{bat.a}}}}{{{Q_{bat}}}}} \right) \times 100 \text{%。}$ (16)

 图 2 电池放电特性曲线 Fig. 2 Battery discharge characteristic curve

 $充电效率=\frac{输出能量}{充电容量}\times 100 \text{%。}$ (17)

 ${C_{sc}} = \frac{{{i_{sc}}t}}{{{V_{sc1}} - {V_{sc2}}}}\text{。}$ (18)

 图 3 超级电容两极之间的电压变化曲线 Fig. 3 The voltage change curve between the two poles of a supercapacitor
 ${E_{sc}} = \frac{1}{2}{C_{sc}}V_{sc}^2\text{。}$ (19)

 图 4 固定移相角下的DC/DC输出电压 Fig. 4 DC/DC output voltage under fixed phase shift angle
3 船舶智能能效管理系统

 图 5 船舶燃料消耗量随功率变化的曲线关系 Fig. 5 Curve relationship between ship fuel consumption and power variation
 $\min {f_0} = \sum\limits_{x = 1}^3 {{f_{v,x}}} \text{。}$ (20)

 ${f_{v,x}} = ap_{g,x}^2 + b{P_{g,x}} + c\text{。}$ (21)

 图 6 燃料消耗率和功率的关系曲线 Fig. 6 Relationship curve between fuel consumption rate and power
4 结　语

 [1] 王凯, 卢博闻, 李仁祥, 等. 船舶多清洁能源混合动力系统及其关键技术[J]. 舰船科学技术, 2020(42): 6-11. WANG Kai, LU Bo-wen, LI Ren-xiang et al. Research progress on multi-clean energy hybrid system and the key technologies of ships[J]. Ship Science and Technology, 2020(42): 6-11. [2] 张程, 贾宝柱. 船舶混合电力推进系统设计及优化控制仿真[J]. 舰船科学技术, 2020(42): 134-139. ZHANG Cheng, JIA Bao-zhu. Research on design and optimization control of ship hybrid electric propulsion system[J]. Ship Science and Technology, 2020(42): 134-139. [3] 孙晓军, 宋恩哲, 姚崇. 船用混合动力推进系统能量管理系统关键技术[J]. 中国机械工程, 2022(33): 469-481+495. SUN Xiao-jun, SONG En-zhe, YAO Chong. Research status of key technology for energy management system of marine hybrid propulsion system[J]. China Mechanical Engineering, 2022(33): 469-481+495. [4] 魏莱, 朱志宇, 张哲卿. 基于航速优化的电推渡轮能量管理策略[J]. 船舶工程, 2022(44): 100-105+114. WEI Lai, ZHU Zhi-yu, ZHANG Zhe-qing. Energy management strategy of electric propulsion ferry based on electric power optimization[J]. Ship Engineering 2022(44): 100-105+114. [5] 潘钊, 商蕾, 高海波等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021(47): 79-85. PAN Zhao, SHANG Lei, GAO Hai-bo et al. Optimization of composite energy storage system and energy management strategy for fuel cell hybrid ships[J]. Journal of Dalian Maritime University, 2021(47): 79-85. DOI:10.16411/j.cnki.issn1006-7736.2021.03.010 [6] 唐道贵, 严新平, 袁裕鹏. 综合电力系统船舶能量管理技术[J]. 中国航海, 2017(40): 56-60. TANG Dao-gui, YAN Xin-ping, YUAN Yu-peng. Power management technology in ship’s integrated power system[J]. Navigation of China, 2017(40): 56-60. DOI:10.3969/j.issn.1000-4653.2017.04.012 [7] 陈剑龙, 刘俊峰, 王振刚等. 基于DRL的无人船混合动力系统能量管理策略研究[J]. 中国测试, 2020(46): 9-15. CHEN Jian-long, LIU Jun-feng, WANG Zhen-gang et al. Energy management strategy of hybrid ship based on deep reinforcement learning[J]. China Measurement & Test, 2020(46): 9-15.