﻿ 基于FPSO压载水系统管路支架整体水锤效应分析
 舰船科学技术  2023, Vol. 45 Issue (22): 105-109    DOI: 10.3404/j.issn.1672-7649.2023.22.019 PDF

Analysis of integral water hammer effect of pipeline support in ballast water system based on FPSO
LI Xiu, DOU Pei-lin, ZHAO Shi-fa, LIU Ya-jiao
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
Abstract: Reasonable analysis of water hammer effect of pipeline system is of great significance to the safety and economy of pipeline system. At present, the study of water hammer effect often only considers the interaction between fluid and pipeline, ignoring the integrity of pipeline and support in the pipeline system. In order to more accurately calculate the water hammer pressure at the interface where the water hammer effect occurs in the pipeline system, a pipeline model that is easy to simplify the calculation is designed based on the parameters of a deep-water universal FPSO pipeline support. Through comparative analysis, the water hammer effect is considered when only the fluid in the pipeline is considered, the fluid and pipeline coupling in the pipeline are considered, and the two-way fluid solid coupling between the fluid in the pipeline and the overall system of the pipeline support is considered. The results show that only considering the fluid in the pipeline and considering the coupling between the fluid in the pipeline and the pipeline has little influence on the water hammer pressure. When the fluid in the pipeline and the overall system of the pipeline support are coupled in a two-way fluid solid way, the calculation results have a significant reduction (about 6.06% in the calculation condition), because the pipeline support has a certain deformation when the water hammer effect occurs (the maximum displacement is 0.0472 m in the calculation condition).
Key words: water hammer effect     FPSO ballast water piping     pipeline support integrity     two-way fluid structure coupling     support deformation
0 引　言

1 模型建立 1.1 数值模型

 $g\frac{{\partial H}}{{\partial x}} + \frac{{\partial v}}{{\partial t}} + \frac{{{\lambda _f}}}{{2D}}v\left| v \right| = 0 \text{，}$ (1)
 $\frac{{\partial H}}{{\partial t}} + \frac{{{a^2}}}{g}\frac{{\partial v}}{{\partial x}} = 0 \text{。}$ (2)

 ${C^ + } = \left\{ \begin{gathered} \frac{g}{a}\frac{{{\rm{d}}H}}{{{\rm{d}}t}} + \frac{{{\rm{d}}v}}{{{\rm{d}}t}} + \frac{{{\lambda _f}}}{{2D}}v\left| v \right| = 0 ，\\ \frac{{{\rm{d}}x}}{{{\rm{d}}t}} = + a 。\\ \end{gathered} \right.$ (3)
 ${C^ - } = \left\{ \begin{gathered} - \frac{g}{a}\frac{{{\rm{d}}H}}{{{\rm{d}}t}} + \frac{{{\rm{d}}v}}{{{\rm{d}}t}} + \frac{{{\lambda _f}}}{{2D}}v\left| v \right| = 0 ，\\ \frac{{{\rm{d}}x}}{{{\rm{d}}t}} = - a 。\\ \end{gathered} \right.$ (4)

 $\left\{ \begin{gathered} {H_i} = \frac{1}{2}({C_{Pi}} + {C_{Mi}})，\\ {Q_i} = \frac{1}{{2B}}({C_{Pi}} - {C_{Mi}})。\\ \end{gathered} \right.$ (5)
 $\left\{ \begin{gathered} {C_{Pi}} = {H_{i - 1}} + {Q_{i - 1}}(B - R\left| {{Q_{i - 1}}} \right|)，\\ {C_{Mi}} = {H_{i + 1}} + {Q_{i + 1}}(B - R\left| {{Q_{i + 1}}} \right|)。\\ \end{gathered} \right.$ (6)
 $\left\{ \begin{gathered} B = a/gA，\\ R = {\lambda _f}\Delta x/2gD{A^2} 。\\ \end{gathered} \right.$ (7)

1.2 管系模型建立

 图 1 水锤计算简化模型示意图 Fig. 1 Simplified model of water hammer calculation

2 管系水锤效应数值仿真 2.1 基于Fluent管系水锤流体仿真

 图 2 Fluent流体仿真计算模型 Fig. 2 Fluent fluid simulation calculation model

 图 3 管系流体仿真wall-fsi界面水锤压力随时间变化图 Fig. 3 Water hammer pressure at wall-fsi interface of pipe system fluid simulation versus time
2.2 将支架简化为约束的双向流固耦合管系水锤仿真

2.3 考虑管道支架整体性的双向流固耦合管系水锤仿真

 图 4 考虑管道支架整体性耦合仿真Transient Structure模块计算模型 Fig. 4 Calculation model of transient structure module considering integrated coupling of pipe support
3 不同计算形式结果对比分析

 图 5 不同计算方式下监测界面水锤压力数据图 Fig. 5 Water hammer pressure data of monitoring interface under different calculation methods

 图 6 不同计算方式下管系最大水锤压力值图 Fig. 6 Maximum water hammer pressure of pipeline system under different calculation methods

 图 7 考虑支架影响的流固耦合计算时管道水压力图 Fig. 7 Water pressure diagram of pipeline during fluid structure coupling calculation considering support influence

 图 8 水锤效应发生时管系中各支架变形情况图 Fig. 8 Deformation of supports in pipe system when water hammer effect occurs
4 结　语

 [1] LI Y, HU X, ZHOU F, et al. A new comprehensive filtering model for pump shut-in water hammer pressure wave signals during hydraulic fracturing[J]. Joumal of Petroleum Scionce and Engineering, 2021: 109796. [2] MIAO Y, QIU Z, ZHANG X, et al. Effects of a water hammer and cavitation on vibration transients in a reservoir-pipe-valve system[J]. Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej (PTMTS), 2021,59(4). 611−622. [3] XI B, WANG C, XI W, et al. Experimental investigation on the water hammer characteristic of stalling fluid in eccentric casing-tubing annulus[J]. Energy, 2022, 253: 1−13. [4] MICHA, KUBRAK, APOLONIUSZ, et al. Water hammer phenomenon in pipeline with inserted flexible tube[J]. Journal of Hydraulic Engineering, 2020, 146(2): 1−11. [5] 张巧玲, 黄铋匀, 杨振东, 等. 基于特征线法的含气输水管道水锤特性分析[J]. 农业工程学报, 2022, 38(5): 79−86. [6] 郭强, 周建旭, 黄亚, 等. 考虑流固耦合的厚壁输水管水锤和振动特性分析[J]. 农业工程学报, 2020, 36(21):137−144. [7] 王祺武, 李志鹏, 朱慈东, 等. 重力流输水管路阀门调节与水锤控制分析[J]. 流体机械, 2020, 48(6): 38−43+50. [8] GROUP L W. Pipeline pressure[J]. LPG World, 2011(21): 17. [9] 陈旭云, 张健, 俞晓东, 等. 考虑爆管工况的长距离供水工程水锤防护研究[J]. 人民黄河, 2021, 43(7): 145−148+159. [10] 孙哲豪, 吴旭敏, 陈丽芬, 等. 高扬程小流量加压供水工程水锤防护设计研究[J]. 灌溉排水学报, 2020, 39(S2): 66−71+75. [11] 陈亚飞, 顾卫国, 王德忠, 等. 球型调节阀关阀水锤效应的试验研究与数值计算[J]. 排灌机械工程学报, 2021, 39(10): 1027−1032. [12] 王学芳. 工业管道中的水锤[M]. 北京: 科学出版社, 1995. [13] 杨豪杰. 通用型FPSO关键管网系统水锤分析及优化防护研究[D]. 镇江: 江苏科技大学.