﻿ 基于参数化建模的双尾鳍节能尾型优化设计
 舰船科学技术  2023, Vol. 45 Issue (22): 56-60    DOI: 10.3404/j.issn.1672-7649.2023.22.010 PDF

The optimization design for twin-skeg stern forms based on parametric modeling
XU Wei, WANG Yan-xia, WEI Jin-fang, SU Jia
Shanghai Branch, China Ship Scientific Research Center, Shanghai 200011, China
Abstract: Under the background of energy conservation and emission reduction in the shipping industry, the riverboat in our country, which has a poor performance and a lack of competitiveness, is in an urgent need for a new generation of hull form. In this paper, by studying the combination of key parameters affecting the hydrodynamic performance of twin-skeg ships, a full parametric model of stern form is established based on the best parameters. With the use of viscous and potential coupling numerical method and the sobol optimization algorithm, the optimization of a target hull form is carried out under the goal for low resistance and delivered power. In order to choose the best design, the calculation results are analyzed in different views. The towing tank model test verifies that the optimized hull form has a good hydrodynamic performance. The method has a significant engineering value in the design period of twin-skeg hull forms, which provides a effective way for the quick design of normal twin-skeg riverboats.
Key words: Friendship     parametric modeling     numerical simulation     twin-skeg
0 引　言

1 Friendship参数化建模 1.1 特征参数

 图 1 尾鳍的中剖线与底部基线夹角示意图 Fig. 1 Angle between the skeg center line and base line

1.2 建立纵向特征曲线

 图 2 纵向特征曲线 Fig. 2 Longitudinal characteristic curves
1.3 生成船体曲面

 图 3 尾部全参数化曲面 Fig. 3 The full parametric surface of stern
2 线型优化计算 2.1 优化采用的CFD软件

 图 4 船体周围流场划分 Fig. 4 The flow field around the ship
2.2 优化方法

2.3 优化分析

 图 5 各方案模型收到功率与原型对比分布 Fig. 5 Distribution of delivered power of different designs compared with the original line in model scale

 图 6 尾部横剖线对比 Fig. 6 Comparison of the transverse line of aftbody

3 优化结果验证 3.1 验证方法

 图 7 阻力计算网格 Fig. 7 Mesh of the resistance calculation
3.2 计算结果分析

 图 8 尾部压力分布对比 Fig. 8 Comparison of the pressure distribution of aftbody

 图 9 桨盘面轴向伴流分布对比 Fig. 9 Comparison of the axial wake distribution at propeller disk

4 模型试验验证

 图 10 试验模型示意图 Fig. 10 Figure of the experiment model

5 结　语

1）基于参数化建模的优化设计方法有效且可靠，能极大缩短线型优化的设计周期；

2）设计吃水、设计航速时优化线型CFD计算得到的模型收到功率相比原型下降5.8%，其中阻力下降0.97%，推进效率增加4.83%；

3）优化线型经模型试验验证，具有较高的推进效率，表明该设计流程具有较高工程应用价值，为内河船双尾鳍线型优化提供思路。

 [1] 许娜. 双尾鳍船型线设计方法研究[D]. 大连: 大连理工大学, 2009. [2] KIM H K, KIM H T, VAN S H. Numerical analysis of flow characteristic of a twin-skeg container ship with variation of stern hull shape[J]. Journal of the Society of Naval Architects of Korea, 2007(6): 551-563. [3] 张大有, 朱涛, 李绍波. 双尾鳍船型研究及发展分析[J]. 船舶工程, 2006(6): 58-62. DOI:10.3969/j.issn.1000-6982.2006.06.001 [4] 张琪, 姜栋, 张明. 双尾鳍船型的参数化建模及线型优化[J]. 船舶, 2021(4): 24-30. DOI:10.19423/j.cnki.31-1561/u.2021.04.024 [5] KEUNJAE K, FABIAN T, NICOLAS B. Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing[J]. Int. J. Nav. Archit. Ocean Eng., 2014(6): 392-405. [6] 李世漠. 双尾节能船型[J]. 中国造船, 1988(1): 69-75. [7] 张萍. 船型参数化设计[D]. 无锡: 江南大学, 2009.