﻿ 基于时域破损仿真的大型船舶舱室布置优化
 舰船科学技术  2023, Vol. 45 Issue (22): 45-49    DOI: 10.3404/j.issn.1672-7649.2023.22.008 PDF

1. 中国船舶及海洋工程研究院，上海 200011;
2. 上海市船舶工程重点实验室，上海 200011

Compartment layout optimization of a large ship based on time domain damage simulation
QIAN Li-jun1, SUN Li1, FENG Pei-yuan2
1. Marine Design and Research Institute of China, Shanghai 200011, China;
2. Shanghai Key Laboratory on Ship Engineering, Shanghai 200011, China
Abstract: Collision and grounding consist of the majority of large ship accidents, where flooding occur due to damaged compartments. Ships with insufficient damage stability have the potential risk of capsize, which severely harms the life safety of people on board. Therefore, stability analysis is one of the key points and difficulties for the general design of the large ship. Based on the numerical method for time domain ship damage stability simulations, taking a large ship for example, this study uses the CAE software Proteus imported from abroad to perform the time domain damage stability analysis of the target ship under critical conditions, and discusses the feasibility and effect of the cross-flooding tank to improve the damage stability. The optimized compartment design layout is proposed, which provides the technical tools for the self development and innovation of subsequent ships.
Key words: large ship     damage stability     time domain simulation     cross-flooding     compartment layout
0 引　言

1）波浪和风等环境激励下，破损船舶的运动响应时域预报；

2）船舱内部积水在舱室间的流动及其与船体相互作用的特性模拟；

3）进舱水流通过破损口流入／流出过程的模拟。

1 时域破损稳性数值建模及预报方法 1.1 破损船舶的动力学模型

 \begin{aligned} & \left\{ { M + {{M_w}\left( t \right)} + {{A_\infty }} } \right\} {\ddot Q} + \left\{ { {{{\dot M}_w}\left( t \right)} + {{B_v}}} \right\} {\dot Q} + \\ & \int_0^t {\left\{ { {K\left( {t - \tau } \right)} {\dot Q\left( \tau \right)} } \right\}{\text{d}}\tau } = {{F_{wave}}} + {{F_{drift}}} + {{F_{wind}}} + \\ & {{F_{current}}} + {{F_{restoring}}} + {{F_{gravity}}} + {{F_{WOD}}} 。\end{aligned} (1)

1.2 破舱进水与舱室之间的相互作用

1.3 破口进流/出流数学模型

 $v = \sqrt {2g\left| {{h_{out}} - {h_{in}}} \right|} ，$ (2)

 $Q\left( t \right) = {K_{dam}} \cdot {\text{sign}}\left( {{h_{out}} - {h_{in}}} \right) \cdot \sqrt {2g\left| {{h_{out}} - {h_{in}}} \right|} \cdot {S_{dam}}。$ (3)

2 CAE软件及目标船 2.1 时域破损仿真软件Proteus

1）船体运动预报所需的水动力系数采用切片法高效计算获得；

2）通过数据库方式生成破损船体在不同浮态下对应的水动力系数；

3）采用脉冲响应函数法建立六自由度的船舶时域运动模型；

4）运动模型中的FK力和恢复力采用瞬时湿表面积分方式获得；

5）基于FMPS（Free-Mass-on-Potential-Surface）模型模拟舱内进水运动；

6）基于Bernoulli方程模拟破口处的进水/出水；

7）采用四阶Runge-Kutta-Feldberg方法求解时域运动。

2.2 目标船信息

 图 1 危险破损工况 Fig. 1 Critical damage load case

 图 2 仿真相关舱段几何模型 Fig. 2 Geometry model of relevant cargo hold of simulation
3 时域破损仿真及舱室布局优化 3.1 时域破损仿真结果分析

 图 3 静水时域破损仿真（船舶达到稳定状态） Fig. 3 Still water time domain damage simulation (stable state)

 图 4 静水时域破损仿真（船舶运动时历曲线） Fig. 4 Still water time domain damage simulation (ship motion duration curve)

 图 5 有义波高2 m不规则波中时域破损仿真（船舶运动时历曲线） Fig. 5 Time domain damage simulation for irregular wave of 2 m Hs (ship motion duration curve)
3.2 舱室布局优化

 图 6 横贯进水舱室设置 Fig. 6 Cross-flooding tank arrangement

 图 7 横贯进水过程 Fig. 7 Cross-flooding procedure

 图 8 设置横贯进水舱室后的船舶破损运动时历 Fig. 8 Time domain damage simulation with cross-flooding tank
4 结　语

 [1] 夏利清, 范佘明. 船舶在波浪中破损稳性数值计算方法综述[C]//船舶水动力学学术会议, 中国武汉, 2004. [2] 马丽君, 冯其, 张楠. 国外船舶破损稳性理论分析[J]//中国舰船研究, 2012, 7(2): 9–13 [3] VASSALOS D, TURAN O. A realistic approach to assessing the damage survivability of passenger ships[J]. Transactions of the Society of Naval Architects and Marine Engineers, 1994, 102: 367–394 [4] ZARAPHONITIS G, PAPANIKOLAOU A, SPANOS D. On a 3D mathematical model of the damage stability of ships in waves[C]//Proceedings of the 6th International Conference on Stability of Ships and Ocean Vehicles, Varna, 1997. [5] SANTOS T, SOARES G. Study of damaged ship motions taking into account floodwater dynamics[J]. Journal of Marine Science and Technology, 2008, 13(3): 291–307. [6] QIAN K, WANG D. Calculation of wave load encountered by damaged ships[C]// Proceedings of the 7th International Conference on Stability of Ships and Ocean Vehicles, Australia, 2000. [7] 李佳, 马宁. 船舶破舱状态浮态的时域计算分析, 中国航海, 2009, 32(1): 49–53. [8] 郭显杰. 规则斜浪中破损船舶进水后的运动响应研究[D]. 天津: 天津大学, 2007. [9] NABAVI Y, CALISAL S, AKINTURK A, et al. A computational investigation of the three dimensional geometric parameters’s effects on the discharge rate of a ship opening[C]//Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janeiro, 2006. [10] SKAAR D, VASSALOS D, JASIONOWSKI A. The use of a meshless CFD method in modeling progressive flooding and damaged stability of ships[C]//Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janeiro, 2006. [11] GAO Z, VASSALOS D. The dynamics of the floodwater and damaged ship in wave[J]. Journal of Hydrodynamics, 2015, 27(5): 689–695. [12] JASIONOWSKI A. An integrated approach to damage ship survivability assessment. PhD thesis[D].Glasgow: University of Strathclyde, 2001. [13] MURASHIGE S, KOMURO M, AIHARA K. Nonlinear roll motion and bifurcation of a Ro-Ro ship with flooded water in regular beam waves[C]//Proceedings of Third International Workshop on Theoretical Advances in Ship Stability and Practical Impact, Crete, Greece, 1997.